MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem14 Structured version   Visualization version   GIF version

Theorem axlowdimlem14 25769
Description: Lemma for axlowdim 25775. Take two possible 𝑄 from axlowdimlem10 25765. They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem14.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
axlowdimlem14.2 𝑅 = ({⟨(𝐽 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem14 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅𝐼 = 𝐽))

Proof of Theorem axlowdimlem14
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 axlowdimlem14.1 . . . . . . 7 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
21axlowdimlem10 25765 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
3 elee 25708 . . . . . . 7 (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
43adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
52, 4mpbid 222 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ)
6 ffn 6012 . . . . 5 (𝑄:(1...𝑁)⟶ℝ → 𝑄 Fn (1...𝑁))
75, 6syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 Fn (1...𝑁))
8 axlowdimlem14.2 . . . . . . 7 𝑅 = ({⟨(𝐽 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0}))
98axlowdimlem10 25765 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 ∈ (𝔼‘𝑁))
10 elee 25708 . . . . . . 7 (𝑁 ∈ ℕ → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ))
1110adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑅 ∈ (𝔼‘𝑁) ↔ 𝑅:(1...𝑁)⟶ℝ))
129, 11mpbid 222 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅:(1...𝑁)⟶ℝ)
13 ffn 6012 . . . . 5 (𝑅:(1...𝑁)⟶ℝ → 𝑅 Fn (1...𝑁))
1412, 13syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1))) → 𝑅 Fn (1...𝑁))
15 eqfnfv 6277 . . . 4 ((𝑄 Fn (1...𝑁) ∧ 𝑅 Fn (1...𝑁)) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
167, 14, 15syl2an 494 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) ∧ (𝑁 ∈ ℕ ∧ 𝐽 ∈ (1...(𝑁 − 1)))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
17163impdi 1378 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅 ↔ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
18 fznatpl1 12353 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
19183adant3 1079 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
2019adantr 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝐼 + 1) ∈ (1...𝑁))
21 ax-1ne0 9965 . . . . . . . 8 1 ≠ 0
2221a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → 1 ≠ 0)
231axlowdimlem11 25766 . . . . . . . 8 (𝑄‘(𝐼 + 1)) = 1
2423a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑄‘(𝐼 + 1)) = 1)
25 elfzelz 12300 . . . . . . . . . . . . 13 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
2625zcnd 11443 . . . . . . . . . . . 12 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℂ)
27 elfzelz 12300 . . . . . . . . . . . . 13 (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℤ)
2827zcnd 11443 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝑁 − 1)) → 𝐽 ∈ ℂ)
29 ax-1cn 9954 . . . . . . . . . . . . 13 1 ∈ ℂ
30 addcan2 10181 . . . . . . . . . . . . 13 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
3129, 30mp3an3 1410 . . . . . . . . . . . 12 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
3226, 28, 31syl2an 494 . . . . . . . . . . 11 ((𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
33323adant1 1077 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) = (𝐽 + 1) ↔ 𝐼 = 𝐽))
3433necon3bid 2834 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≠ (𝐽 + 1) ↔ 𝐼𝐽))
3534biimpar 502 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝐼 + 1) ≠ (𝐽 + 1))
368axlowdimlem12 25767 . . . . . . . 8 (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝐼 + 1) ≠ (𝐽 + 1)) → (𝑅‘(𝐼 + 1)) = 0)
3720, 35, 36syl2anc 692 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑅‘(𝐼 + 1)) = 0)
3822, 24, 373netr4d 2867 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1)))
39 df-ne 2791 . . . . . . . 8 ((𝑄𝑖) ≠ (𝑅𝑖) ↔ ¬ (𝑄𝑖) = (𝑅𝑖))
40 fveq2 6158 . . . . . . . . 9 (𝑖 = (𝐼 + 1) → (𝑄𝑖) = (𝑄‘(𝐼 + 1)))
41 fveq2 6158 . . . . . . . . 9 (𝑖 = (𝐼 + 1) → (𝑅𝑖) = (𝑅‘(𝐼 + 1)))
4240, 41neeq12d 2851 . . . . . . . 8 (𝑖 = (𝐼 + 1) → ((𝑄𝑖) ≠ (𝑅𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))))
4339, 42syl5bbr 274 . . . . . . 7 (𝑖 = (𝐼 + 1) → (¬ (𝑄𝑖) = (𝑅𝑖) ↔ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))))
4443rspcev 3299 . . . . . 6 (((𝐼 + 1) ∈ (1...𝑁) ∧ (𝑄‘(𝐼 + 1)) ≠ (𝑅‘(𝐼 + 1))) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖))
4520, 38, 44syl2anc 692 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝐽) → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖))
4645ex 450 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝐼𝐽 → ∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖)))
47 df-ne 2791 . . . 4 (𝐼𝐽 ↔ ¬ 𝐼 = 𝐽)
48 rexnal 2991 . . . 4 (∃𝑖 ∈ (1...𝑁) ¬ (𝑄𝑖) = (𝑅𝑖) ↔ ¬ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖))
4946, 47, 483imtr3g 284 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (¬ 𝐼 = 𝐽 → ¬ ∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖)))
5049con4d 114 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (∀𝑖 ∈ (1...𝑁)(𝑄𝑖) = (𝑅𝑖) → 𝐼 = 𝐽))
5117, 50sylbid 230 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅𝐼 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  cdif 3557  cun 3558  {csn 4155  cop 4161   × cxp 5082   Fn wfn 5852  wf 5853  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899  cmin 10226  cn 10980  ...cfz 12284  𝔼cee 25702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-ee 25705
This theorem is referenced by:  axlowdimlem15  25770
  Copyright terms: Public domain W3C validator