![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem10 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 26062. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem10.1 | ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem10 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6843 | . . . . . . . . 9 ⊢ (𝐼 + 1) ∈ V | |
2 | 1ex 10248 | . . . . . . . . 9 ⊢ 1 ∈ V | |
3 | 1, 2 | f1osn 6339 | . . . . . . . 8 ⊢ {〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}–1-1-onto→{1} |
4 | f1of 6300 | . . . . . . . 8 ⊢ ({〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}–1-1-onto→{1} → {〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1}) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ {〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1} |
6 | c0ex 10247 | . . . . . . . 8 ⊢ 0 ∈ V | |
7 | 6 | fconst 6253 | . . . . . . 7 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} |
8 | 5, 7 | pm3.2i 470 | . . . . . 6 ⊢ ({〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}) |
9 | disjdif 4185 | . . . . . 6 ⊢ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ | |
10 | fun 6228 | . . . . . 6 ⊢ ((({〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}) ∧ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅) → ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})) | |
11 | 8, 9, 10 | mp2an 710 | . . . . 5 ⊢ ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) |
12 | axlowdimlem10.1 | . . . . . 6 ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | |
13 | 12 | feq1i 6198 | . . . . 5 ⊢ (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ↔ ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})) |
14 | 11, 13 | mpbir 221 | . . . 4 ⊢ 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) |
15 | 1re 10252 | . . . . . 6 ⊢ 1 ∈ ℝ | |
16 | snssi 4485 | . . . . . 6 ⊢ (1 ∈ ℝ → {1} ⊆ ℝ) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ {1} ⊆ ℝ |
18 | 0re 10253 | . . . . . 6 ⊢ 0 ∈ ℝ | |
19 | snssi 4485 | . . . . . 6 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ {0} ⊆ ℝ |
21 | 17, 20 | unssi 3932 | . . . 4 ⊢ ({1} ∪ {0}) ⊆ ℝ |
22 | fss 6218 | . . . 4 ⊢ ((𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ∧ ({1} ∪ {0}) ⊆ ℝ) → 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ) | |
23 | 14, 21, 22 | mp2an 710 | . . 3 ⊢ 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ |
24 | fznatpl1 12609 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) | |
25 | 24 | snssd 4486 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → {(𝐼 + 1)} ⊆ (1...𝑁)) |
26 | undif 4194 | . . . . 5 ⊢ ({(𝐼 + 1)} ⊆ (1...𝑁) ↔ ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁)) | |
27 | 25, 26 | sylib 208 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁)) |
28 | 27 | feq2d 6193 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ ↔ 𝑄:(1...𝑁)⟶ℝ)) |
29 | 23, 28 | mpbii 223 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ) |
30 | elee 25995 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ)) | |
31 | 30 | adantr 472 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ)) |
32 | 29, 31 | mpbird 247 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∖ cdif 3713 ∪ cun 3714 ∩ cin 3715 ⊆ wss 3716 ∅c0 4059 {csn 4322 〈cop 4328 × cxp 5265 ⟶wf 6046 –1-1-onto→wf1o 6049 ‘cfv 6050 (class class class)co 6815 ℝcr 10148 0cc0 10149 1c1 10150 + caddc 10152 − cmin 10479 ℕcn 11233 ...cfz 12540 𝔼cee 25989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-ee 25992 |
This theorem is referenced by: axlowdimlem14 26056 axlowdimlem15 26057 axlowdimlem16 26058 axlowdimlem17 26059 |
Copyright terms: Public domain | W3C validator |