MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdim Structured version   Visualization version   GIF version

Theorem axlowdim 25886
Description: The general lower dimension axiom. Take a dimension 𝑁 greater than or equal to three. Then, there are three non-colinear points in 𝑁 dimensional space that are equidistant from 𝑁 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.)
Assertion
Ref Expression
axlowdim (𝑁 ∈ (ℤ‘3) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
Distinct variable group:   𝑖,𝑁,𝑝,𝑥,𝑦,𝑧

Proof of Theorem axlowdim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 11767 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
2 0re 10078 . . . . 5 0 ∈ ℝ
32, 2axlowdimlem5 25871 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
41, 3syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
5 1re 10077 . . . . 5 1 ∈ ℝ
65, 2axlowdimlem5 25871 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
71, 6syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
82, 5axlowdimlem5 25871 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
91, 8syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
10 eqid 2651 . . . 4 (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
1110axlowdimlem15 25881 . . 3 (𝑁 ∈ (ℤ‘3) → (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
12 eqid 2651 . . . . . 6 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
13 eqid 2651 . . . . . 6 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
14 eqid 2651 . . . . . 6 ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
1512, 13, 14, 2, 2axlowdimlem17 25883 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
16 eqid 2651 . . . . . 6 ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
1712, 13, 16, 5, 2axlowdimlem17 25883 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
18 eqid 2651 . . . . . 6 ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))
1912, 13, 18, 2, 5axlowdimlem17 25883 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
20 1zzd 11446 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 1 ∈ ℤ)
21 peano2zm 11458 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
22213ad2ant2 1103 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (𝑁 − 1) ∈ ℤ)
23 2m1e1 11173 . . . . . . . . . . . . . . 15 (2 − 1) = 1
24 2re 11128 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
25 3re 11132 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
26 2lt3 11233 . . . . . . . . . . . . . . . . . . . 20 2 < 3
2724, 25, 26ltleii 10198 . . . . . . . . . . . . . . . . . . 19 2 ≤ 3
28 zre 11419 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
29 letr 10169 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
3024, 25, 29mp3an12 1454 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℝ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
3128, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
3227, 31mpani 712 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 ≤ 𝑁))
3332imp 444 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁)
34333adant1 1099 . . . . . . . . . . . . . . . 16 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁)
35283ad2ant2 1103 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 𝑁 ∈ ℝ)
36 lesub1 10560 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1)))
3724, 5, 36mp3an13 1455 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℝ → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1)))
3835, 37syl 17 . . . . . . . . . . . . . . . 16 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1)))
3934, 38mpbid 222 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (2 − 1) ≤ (𝑁 − 1))
4023, 39syl5eqbrr 4721 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 1 ≤ (𝑁 − 1))
4120, 22, 403jca 1261 . . . . . . . . . . . . 13 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ≤ (𝑁 − 1)))
42 eluz2 11731 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
43 eluz2 11731 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ≤ (𝑁 − 1)))
4441, 42, 433imtr4i 281 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) ∈ (ℤ‘1))
45 eluzfz1 12386 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑁 − 1)))
4644, 45syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 1 ∈ (1...(𝑁 − 1)))
4746adantr 480 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 1 ∈ (1...(𝑁 − 1)))
48 eqeq1 2655 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
49 oveq1 6697 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
5049opeq1d 4439 . . . . . . . . . . . . . 14 (𝑘 = 1 → ⟨(𝑘 + 1), 1⟩ = ⟨(1 + 1), 1⟩)
5150sneqd 4222 . . . . . . . . . . . . 13 (𝑘 = 1 → {⟨(𝑘 + 1), 1⟩} = {⟨(1 + 1), 1⟩})
5249sneqd 4222 . . . . . . . . . . . . . . 15 (𝑘 = 1 → {(𝑘 + 1)} = {(1 + 1)})
5352difeq2d 3761 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((1...𝑁) ∖ {(𝑘 + 1)}) = ((1...𝑁) ∖ {(1 + 1)}))
5453xpeq1d 5172 . . . . . . . . . . . . 13 (𝑘 = 1 → (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) = (((1...𝑁) ∖ {(1 + 1)}) × {0}))
5551, 54uneq12d 3801 . . . . . . . . . . . 12 (𝑘 = 1 → ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0})))
5648, 55ifbieq2d 4144 . . . . . . . . . . 11 (𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
57 snex 4938 . . . . . . . . . . . . 13 {⟨3, -1⟩} ∈ V
58 ovex 6718 . . . . . . . . . . . . . . 15 (1...𝑁) ∈ V
59 difexg 4841 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {3}) ∈ V)
6058, 59ax-mp 5 . . . . . . . . . . . . . 14 ((1...𝑁) ∖ {3}) ∈ V
61 snex 4938 . . . . . . . . . . . . . 14 {0} ∈ V
6260, 61xpex 7004 . . . . . . . . . . . . 13 (((1...𝑁) ∖ {3}) × {0}) ∈ V
6357, 62unex 6998 . . . . . . . . . . . 12 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ V
64 snex 4938 . . . . . . . . . . . . 13 {⟨(1 + 1), 1⟩} ∈ V
65 difexg 4841 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {(1 + 1)}) ∈ V)
6658, 65ax-mp 5 . . . . . . . . . . . . . 14 ((1...𝑁) ∖ {(1 + 1)}) ∈ V
6766, 61xpex 7004 . . . . . . . . . . . . 13 (((1...𝑁) ∖ {(1 + 1)}) × {0}) ∈ V
6864, 67unex 6998 . . . . . . . . . . . 12 ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0})) ∈ V
6963, 68ifex 4189 . . . . . . . . . . 11 if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))) ∈ V
7056, 10, 69fvmpt 6321 . . . . . . . . . 10 (1 ∈ (1...(𝑁 − 1)) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
7147, 70syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
72 eqid 2651 . . . . . . . . . 10 1 = 1
7372iftruei 4126 . . . . . . . . 9 if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
7471, 73syl6eq 2701 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
7574opeq1d 4439 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
76 2eluzge1 11772 . . . . . . . . . . . . 13 2 ∈ (ℤ‘1)
77 fzss1 12418 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1)))
7876, 77ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))
7978sseli 3632 . . . . . . . . . . 11 (𝑖 ∈ (2...(𝑁 − 1)) → 𝑖 ∈ (1...(𝑁 − 1)))
8079adantl 481 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 𝑖 ∈ (1...(𝑁 − 1)))
81 eqeq1 2655 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 = 1 ↔ 𝑖 = 1))
82 oveq1 6697 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
8382opeq1d 4439 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ⟨(𝑘 + 1), 1⟩ = ⟨(𝑖 + 1), 1⟩)
8483sneqd 4222 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → {⟨(𝑘 + 1), 1⟩} = {⟨(𝑖 + 1), 1⟩})
8582sneqd 4222 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → {(𝑘 + 1)} = {(𝑖 + 1)})
8685difeq2d 3761 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ((1...𝑁) ∖ {(𝑘 + 1)}) = ((1...𝑁) ∖ {(𝑖 + 1)}))
8786xpeq1d 5172 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
8884, 87uneq12d 3801 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))
8981, 88ifbieq2d 4144 . . . . . . . . . . 11 (𝑘 = 𝑖 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
90 snex 4938 . . . . . . . . . . . . 13 {⟨(𝑖 + 1), 1⟩} ∈ V
91 difexg 4841 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {(𝑖 + 1)}) ∈ V)
9258, 91ax-mp 5 . . . . . . . . . . . . . 14 ((1...𝑁) ∖ {(𝑖 + 1)}) ∈ V
9392, 61xpex 7004 . . . . . . . . . . . . 13 (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) ∈ V
9490, 93unex 6998 . . . . . . . . . . . 12 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ V
9563, 94ifex 4189 . . . . . . . . . . 11 if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) ∈ V
9689, 10, 95fvmpt 6321 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑁 − 1)) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖) = if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
9780, 96syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖) = if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
98 1lt2 11232 . . . . . . . . . . . . . . . 16 1 < 2
995, 24ltnlei 10196 . . . . . . . . . . . . . . . 16 (1 < 2 ↔ ¬ 2 ≤ 1)
10098, 99mpbi 220 . . . . . . . . . . . . . . 15 ¬ 2 ≤ 1
101100intnanr 981 . . . . . . . . . . . . . 14 ¬ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))
102 eluzelz 11735 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
103102, 21syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) ∈ ℤ)
104 1z 11445 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
105 2z 11447 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
106 elfz 12370 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (1 ∈ (2...(𝑁 − 1)) ↔ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))))
107104, 105, 106mp3an12 1454 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℤ → (1 ∈ (2...(𝑁 − 1)) ↔ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))))
108103, 107syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → (1 ∈ (2...(𝑁 − 1)) ↔ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1))))
109101, 108mtbiri 316 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → ¬ 1 ∈ (2...(𝑁 − 1)))
110 eleq1 2718 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝑖 ∈ (2...(𝑁 − 1)) ↔ 1 ∈ (2...(𝑁 − 1))))
111110notbid 307 . . . . . . . . . . . . 13 (𝑖 = 1 → (¬ 𝑖 ∈ (2...(𝑁 − 1)) ↔ ¬ 1 ∈ (2...(𝑁 − 1))))
112109, 111syl5ibrcom 237 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → (𝑖 = 1 → ¬ 𝑖 ∈ (2...(𝑁 − 1))))
113112con2d 129 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑖 ∈ (2...(𝑁 − 1)) → ¬ 𝑖 = 1))
114113imp 444 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ¬ 𝑖 = 1)
115114iffalsed 4130 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))
11697, 115eqtrd 2685 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))
117116opeq1d 4439 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
11875, 117breq12d 4698 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
11974opeq1d 4439 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
120116opeq1d 4439 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
121119, 120breq12d 4698 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
12246, 70syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(1 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))))
123122, 73syl6eq 2701 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
124123opeq1d 4439 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
125124adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
126116opeq1d 4439 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
127125, 126breq12d 4698 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
128118, 121, 1273anbi123d 1439 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ (⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)))
12915, 17, 19, 128mpbir3and 1264 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
130129ralrimiva 2995 . . 3 (𝑁 ∈ (ℤ‘3) → ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
13114, 16, 18axlowdimlem6 25872 . . . 4 (𝑁 ∈ (ℤ‘2) → ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1321, 131syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
133 opeq2 4434 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
134 opeq2 4434 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
135133, 134breq12d 4698 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1361353anbi1d 1443 . . . . . 6 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
137136ralbidv 3015 . . . . 5 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
138 breq1 4688 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑥 Btwn ⟨𝑦, 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩))
139 opeq2 4434 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑧, 𝑥⟩ = ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
140139breq2d 4697 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑦 Btwn ⟨𝑧, 𝑥⟩ ↔ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
141 opeq1 4433 . . . . . . . 8 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑥, 𝑦⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)
142141breq2d 4697 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩))
143138, 140, 1423orbi123d 1438 . . . . . 6 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)))
144143notbid 307 . . . . 5 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)))
145137, 1443anbi23d 1442 . . . 4 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩))))
146 opeq2 4434 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
147 opeq2 4434 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
148146, 147breq12d 4698 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1491483anbi2d 1444 . . . . . 6 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
150149ralbidv 3015 . . . . 5 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
151 opeq1 4433 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑦, 𝑧⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩)
152151breq2d 4697 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩))
153 breq1 4688 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
154 opeq2 4434 . . . . . . . 8 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
155154breq2d 4697 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩ ↔ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
156152, 153, 1553orbi123d 1438 . . . . . 6 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
157156notbid 307 . . . . 5 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
158150, 1573anbi23d 1442 . . . 4 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))))
159 opeq2 4434 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
160 opeq2 4434 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
161159, 160breq12d 4698 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
1621613anbi3d 1445 . . . . . 6 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ((⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)))
163162ralbidv 3015 . . . . 5 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)))
164 opeq2 4434 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
165164breq2d 4697 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
166 opeq1 4433 . . . . . . . 8 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
167166breq2d 4697 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
168 breq1 4688 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
169165, 167, 1683orbi123d 1438 . . . . . 6 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
170169notbid 307 . . . . 5 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
171163, 1703anbi23d 1442 . . . 4 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))))
172145, 158, 171rspc3ev 3357 . . 3 (((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) ∧ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
1734, 7, 9, 11, 130, 132, 172syl33anc 1381 . 2 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
174 ovex 6718 . . . 4 (1...(𝑁 − 1)) ∈ V
175174mptex 6527 . . 3 (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) ∈ V
176 f1eq1 6134 . . . . . 6 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ↔ (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁)))
177 fveq1 6228 . . . . . . . . . 10 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (𝑝‘1) = ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1))
178177opeq1d 4439 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝‘1), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩)
179 fveq1 6228 . . . . . . . . . 10 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (𝑝𝑖) = ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖))
180179opeq1d 4439 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝𝑖), 𝑥⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩)
181178, 180breq12d 4698 . . . . . . . 8 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩))
182177opeq1d 4439 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝‘1), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩)
183179opeq1d 4439 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝𝑖), 𝑦⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩)
184182, 183breq12d 4698 . . . . . . . 8 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩))
185177opeq1d 4439 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝‘1), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩)
186179opeq1d 4439 . . . . . . . . 9 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ⟨(𝑝𝑖), 𝑧⟩ = ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)
187185, 186breq12d 4698 . . . . . . . 8 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩ ↔ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩))
188181, 184, 1873anbi123d 1439 . . . . . . 7 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ((⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ↔ (⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
189188ralbidv 3015 . . . . . 6 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩)))
190176, 1893anbi12d 1440 . . . . 5 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → ((𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))))
191190rexbidv 3081 . . . 4 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))))
1921912rexbidv 3086 . . 3 (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))))
193175, 192spcev 3331 . 2 (∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))):(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑥⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑥⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑦⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑦⟩ ∧ ⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), 𝑧⟩Cgr⟨((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
194173, 193syl 17 1 (𝑁 ∈ (ℤ‘3) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  cun 3605  wss 3607  ifcif 4119  {csn 4210  {cpr 4212  cop 4216   class class class wbr 4685  cmpt 4762   × cxp 5141  1-1wf1 5923  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304  -cneg 10305  2c2 11108  3c3 11109  cz 11415  cuz 11725  ...cfz 12364  𝔼cee 25813   Btwn cbtwn 25814  Cgrccgr 25815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-ee 25816  df-btwn 25817  df-cgr 25818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator