Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi2m1 Structured version   Visualization version   GIF version

Theorem axi2m1 10182
 Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 10206. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 10103 . . . . . 6 0RR
2 1sr 10104 . . . . . 6 1RR
3 mulcnsr 10159 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 673 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 10122 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 10121 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 6804 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 10105 . . . . . . . . . 10 -1RR
11 1idsr 10121 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2793 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 6805 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsr 10110 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
16 0idsr 10120 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1710, 16ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1814, 15, 173eqtri 2797 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
19 00sr 10122 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
202, 19ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
21 1idsr 10121 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
221, 21ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2320, 22oveq12i 6805 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
24 0idsr 10120 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
251, 24ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2623, 25eqtri 2793 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2718, 26opeq12i 4544 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
284, 27eqtri 2793 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
2928oveq1i 6803 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
30 addresr 10161 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3110, 2, 30mp2an 672 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
32 m1p1sr 10115 . . . 4 (-1R +R 1R) = 0R
3332opeq1i 4542 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3429, 31, 333eqtri 2797 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
35 df-i 10147 . . . 4 i = ⟨0R, 1R
3635, 35oveq12i 6805 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
37 df-1 10146 . . 3 1 = ⟨1R, 0R
3836, 37oveq12i 6805 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
39 df-0 10145 . 2 0 = ⟨0R, 0R
4034, 38, 393eqtr4i 2803 1 ((i · i) + 1) = 0
 Colors of variables: wff setvar class Syntax hints:   = wceq 1631   ∈ wcel 2145  ⟨cop 4322  (class class class)co 6793  Rcnr 9889  0Rc0r 9890  1Rc1r 9891  -1Rcm1r 9892   +R cplr 9893   ·R cmr 9894  0cc0 10138  1c1 10139  ici 10140   + caddc 10141   · cmul 10143 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-omul 7718  df-er 7896  df-ec 7898  df-qs 7902  df-ni 9896  df-pli 9897  df-mi 9898  df-lti 9899  df-plpq 9932  df-mpq 9933  df-ltpq 9934  df-enq 9935  df-nq 9936  df-erq 9937  df-plq 9938  df-mq 9939  df-1nq 9940  df-rq 9941  df-ltnq 9942  df-np 10005  df-1p 10006  df-plp 10007  df-mp 10008  df-ltp 10009  df-enr 10079  df-nr 10080  df-plr 10081  df-mr 10082  df-0r 10084  df-1r 10085  df-m1r 10086  df-c 10144  df-0 10145  df-1 10146  df-i 10147  df-add 10149  df-mul 10150 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator