MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth5 Structured version   Visualization version   GIF version

Theorem axgroth5 9631
Description: The Tarski-Grothendieck axiom using abbreviations. (Contributed by NM, 22-Jun-2009.)
Assertion
Ref Expression
axgroth5 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem axgroth5
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ax-groth 9630 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
2 biid 251 . . . 4 (𝑥𝑦𝑥𝑦)
3 pwss 4166 . . . . . 6 (𝒫 𝑧𝑦 ↔ ∀𝑤(𝑤𝑧𝑤𝑦))
4 pwss 4166 . . . . . . 7 (𝒫 𝑧𝑤 ↔ ∀𝑣(𝑣𝑧𝑣𝑤))
54rexbii 3037 . . . . . 6 (∃𝑤𝑦 𝒫 𝑧𝑤 ↔ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))
63, 5anbi12i 732 . . . . 5 ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)))
76ralbii 2977 . . . 4 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)))
8 df-ral 2914 . . . . 5 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧(𝑧 ∈ 𝒫 𝑦 → (𝑧𝑦𝑧𝑦)))
9 selpw 4156 . . . . . . 7 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
109imbi1i 339 . . . . . 6 ((𝑧 ∈ 𝒫 𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
1110albii 1745 . . . . 5 (∀𝑧(𝑧 ∈ 𝒫 𝑦 → (𝑧𝑦𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
128, 11bitri 264 . . . 4 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
132, 7, 123anbi123i 1249 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
1413exbii 1772 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
151, 14mpbir 221 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036  wal 1479  wex 1702  wcel 1988  wral 2909  wrex 2910  wss 3567  𝒫 cpw 4149   class class class wbr 4644  cen 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-groth 9630
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-v 3197  df-in 3574  df-ss 3581  df-pw 4151
This theorem is referenced by:  grothpw  9633  grothpwex  9634  axgroth6  9635  grothtsk  9642
  Copyright terms: Public domain W3C validator