MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem4 Structured version   Visualization version   GIF version

Theorem axdc3lem4 9260
Description: Lemma for axdc3 9261. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 9253 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (𝑛):𝑚𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 9253 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that 𝑆 is nonempty, and that 𝐺 always maps to a nonempty subset of 𝑆, so that we can apply axdc2 9256. See axdc3lem2 9258 for the rest of the proof. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem4.1 𝐴 ∈ V
axdc3lem4.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem4.3 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
Assertion
Ref Expression
axdc3lem4 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝐴,𝑛,𝑥,𝑘,𝑠   𝐶,𝑔,𝑘   𝐶,𝑛,𝑠   𝑔,𝐹,𝑘   𝑛,𝐹,𝑥,𝑠   𝑘,𝐺   𝑆,𝑘,𝑠,𝑥   𝑦,𝑆,𝑥   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝑆(𝑔,𝑛)   𝐹(𝑦)   𝐺(𝑥,𝑦,𝑔,𝑛,𝑠)

Proof of Theorem axdc3lem4
Dummy variables 𝑚 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7070 . . . . . 6 ∅ ∈ ω
2 eqid 2620 . . . . . . . . . 10 {⟨∅, 𝐶⟩} = {⟨∅, 𝐶⟩}
3 fsng 6389 . . . . . . . . . . 11 ((∅ ∈ ω ∧ 𝐶𝐴) → ({⟨∅, 𝐶⟩}:{∅}⟶{𝐶} ↔ {⟨∅, 𝐶⟩} = {⟨∅, 𝐶⟩}))
41, 3mpan 705 . . . . . . . . . 10 (𝐶𝐴 → ({⟨∅, 𝐶⟩}:{∅}⟶{𝐶} ↔ {⟨∅, 𝐶⟩} = {⟨∅, 𝐶⟩}))
52, 4mpbiri 248 . . . . . . . . 9 (𝐶𝐴 → {⟨∅, 𝐶⟩}:{∅}⟶{𝐶})
6 snssi 4330 . . . . . . . . 9 (𝐶𝐴 → {𝐶} ⊆ 𝐴)
75, 6fssd 6044 . . . . . . . 8 (𝐶𝐴 → {⟨∅, 𝐶⟩}:{∅}⟶𝐴)
8 suc0 5787 . . . . . . . . 9 suc ∅ = {∅}
98feq2i 6024 . . . . . . . 8 ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ↔ {⟨∅, 𝐶⟩}:{∅}⟶𝐴)
107, 9sylibr 224 . . . . . . 7 (𝐶𝐴 → {⟨∅, 𝐶⟩}:suc ∅⟶𝐴)
11 fvsng 6432 . . . . . . . 8 ((∅ ∈ ω ∧ 𝐶𝐴) → ({⟨∅, 𝐶⟩}‘∅) = 𝐶)
121, 11mpan 705 . . . . . . 7 (𝐶𝐴 → ({⟨∅, 𝐶⟩}‘∅) = 𝐶)
13 ral0 4067 . . . . . . . 8 𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))
1413a1i 11 . . . . . . 7 (𝐶𝐴 → ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)))
1510, 12, 143jca 1240 . . . . . 6 (𝐶𝐴 → ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
16 suceq 5778 . . . . . . . . 9 (𝑚 = ∅ → suc 𝑚 = suc ∅)
1716feq2d 6018 . . . . . . . 8 (𝑚 = ∅ → ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ↔ {⟨∅, 𝐶⟩}:suc ∅⟶𝐴))
18 raleq 3133 . . . . . . . 8 (𝑚 = ∅ → (∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)) ↔ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
1917, 183anbi13d 1399 . . . . . . 7 (𝑚 = ∅ → (({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))) ↔ ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)))))
2019rspcev 3304 . . . . . 6 ((∅ ∈ ω ∧ ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)))) → ∃𝑚 ∈ ω ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
211, 15, 20sylancr 694 . . . . 5 (𝐶𝐴 → ∃𝑚 ∈ ω ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
22 axdc3lem4.1 . . . . . 6 𝐴 ∈ V
23 axdc3lem4.2 . . . . . 6 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
24 snex 4899 . . . . . 6 {⟨∅, 𝐶⟩} ∈ V
2522, 23, 24axdc3lem3 9259 . . . . 5 ({⟨∅, 𝐶⟩} ∈ 𝑆 ↔ ∃𝑚 ∈ ω ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
2621, 25sylibr 224 . . . 4 (𝐶𝐴 → {⟨∅, 𝐶⟩} ∈ 𝑆)
27 ne0i 3913 . . . 4 ({⟨∅, 𝐶⟩} ∈ 𝑆𝑆 ≠ ∅)
2826, 27syl 17 . . 3 (𝐶𝐴𝑆 ≠ ∅)
29 ssrab2 3679 . . . . . . 7 {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ⊆ 𝑆
3022, 23axdc3lem 9257 . . . . . . . 8 𝑆 ∈ V
3130elpw2 4819 . . . . . . 7 ({𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ 𝒫 𝑆 ↔ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ⊆ 𝑆)
3229, 31mpbir 221 . . . . . 6 {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ 𝒫 𝑆
3332a1i 11 . . . . 5 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ 𝒫 𝑆)
34 vex 3198 . . . . . . . . . 10 𝑥 ∈ V
3522, 23, 34axdc3lem3 9259 . . . . . . . . 9 (𝑥𝑆 ↔ ∃𝑚 ∈ ω (𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
36 simp2 1060 . . . . . . . . . . . . . . . 16 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → 𝑥:suc 𝑚𝐴)
37 vex 3198 . . . . . . . . . . . . . . . . . . . . . 22 𝑚 ∈ V
3837sucid 5792 . . . . . . . . . . . . . . . . . . . . 21 𝑚 ∈ suc 𝑚
39 ffvelrn 6343 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥:suc 𝑚𝐴𝑚 ∈ suc 𝑚) → (𝑥𝑚) ∈ 𝐴)
4038, 39mpan2 706 . . . . . . . . . . . . . . . . . . . 20 (𝑥:suc 𝑚𝐴 → (𝑥𝑚) ∈ 𝐴)
41 ffvelrn 6343 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑥𝑚) ∈ 𝐴) → (𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}))
4240, 41sylan2 491 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}))
43 eldifn 3725 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}) → ¬ (𝐹‘(𝑥𝑚)) ∈ {∅})
44 fvex 6188 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹‘(𝑥𝑚)) ∈ V
4544elsn 4183 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘(𝑥𝑚)) ∈ {∅} ↔ (𝐹‘(𝑥𝑚)) = ∅)
4645necon3bbii 2838 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝐹‘(𝑥𝑚)) ∈ {∅} ↔ (𝐹‘(𝑥𝑚)) ≠ ∅)
47 n0 3923 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘(𝑥𝑚)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
4846, 47bitri 264 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐹‘(𝑥𝑚)) ∈ {∅} ↔ ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
4943, 48sylib 208 . . . . . . . . . . . . . . . . . . 19 ((𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
5042, 49syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
51 simp32 1096 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → 𝑥:suc 𝑚𝐴)
52 eldifi 3724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹‘(𝑥𝑚)) ∈ 𝒫 𝐴)
53 elelpwi 4162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝐹‘(𝑥𝑚)) ∈ 𝒫 𝐴) → 𝑧𝐴)
5453expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹‘(𝑥𝑚)) ∈ 𝒫 𝐴 → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → 𝑧𝐴))
5542, 52, 543syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → 𝑧𝐴))
56 peano2 7071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚 ∈ ω → suc 𝑚 ∈ ω)
57563ad2ant3 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → suc 𝑚 ∈ ω)
58573ad2ant1 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → suc 𝑚 ∈ ω)
59 simplr 791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → 𝑥:suc 𝑚𝐴)
6034dmex 7084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 dom 𝑥 ∈ V
61 vex 3198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 𝑧 ∈ V
62 eqid 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 {⟨dom 𝑥, 𝑧⟩} = {⟨dom 𝑥, 𝑧⟩}
63 fsng 6389 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((dom 𝑥 ∈ V ∧ 𝑧 ∈ V) → ({⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧} ↔ {⟨dom 𝑥, 𝑧⟩} = {⟨dom 𝑥, 𝑧⟩}))
6462, 63mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((dom 𝑥 ∈ V ∧ 𝑧 ∈ V) → {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧})
6560, 61, 64mp2an 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧}
66 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → 𝑧𝐴)
6766snssd 4331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → {𝑧} ⊆ 𝐴)
68 fss 6043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (({⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧} ∧ {𝑧} ⊆ 𝐴) → {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶𝐴)
6965, 67, 68sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶𝐴)
70 fdm 6038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥:suc 𝑚𝐴 → dom 𝑥 = suc 𝑚)
7156adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → suc 𝑚 ∈ ω)
72 eleq1 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (dom 𝑥 = suc 𝑚 → (dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω))
7372adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω))
7471, 73mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → dom 𝑥 ∈ ω)
75 nnord 7058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (dom 𝑥 ∈ ω → Ord dom 𝑥)
76 ordirr 5729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (Ord dom 𝑥 → ¬ dom 𝑥 ∈ dom 𝑥)
7774, 75, 763syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → ¬ dom 𝑥 ∈ dom 𝑥)
78 eleq2 2688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (dom 𝑥 = suc 𝑚 → (dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚))
7978adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚))
8077, 79mtbid 314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → ¬ dom 𝑥 ∈ suc 𝑚)
81 disjsn 4237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((suc 𝑚 ∩ {dom 𝑥}) = ∅ ↔ ¬ dom 𝑥 ∈ suc 𝑚)
8280, 81sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (suc 𝑚 ∩ {dom 𝑥}) = ∅)
8370, 82sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (suc 𝑚 ∩ {dom 𝑥}) = ∅)
8483adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (suc 𝑚 ∩ {dom 𝑥}) = ∅)
85 fun2 6054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑥:suc 𝑚𝐴 ∧ {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶𝐴) ∧ (suc 𝑚 ∩ {dom 𝑥}) = ∅) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):(suc 𝑚 ∪ {dom 𝑥})⟶𝐴)
8659, 69, 84, 85syl21anc 1323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):(suc 𝑚 ∪ {dom 𝑥})⟶𝐴)
87 sneq 4178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (dom 𝑥 = suc 𝑚 → {dom 𝑥} = {suc 𝑚})
8887uneq2d 3759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (dom 𝑥 = suc 𝑚 → (suc 𝑚 ∪ {dom 𝑥}) = (suc 𝑚 ∪ {suc 𝑚}))
89 df-suc 5717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 suc suc 𝑚 = (suc 𝑚 ∪ {suc 𝑚})
9088, 89syl6eqr 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (dom 𝑥 = suc 𝑚 → (suc 𝑚 ∪ {dom 𝑥}) = suc suc 𝑚)
9170, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥:suc 𝑚𝐴 → (suc 𝑚 ∪ {dom 𝑥}) = suc suc 𝑚)
9291ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (suc 𝑚 ∪ {dom 𝑥}) = suc suc 𝑚)
9392feq2d 6018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):(suc 𝑚 ∪ {dom 𝑥})⟶𝐴 ↔ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
9486, 93mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)
9594ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (𝑧𝐴 → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
9695adantrd 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
9796a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)))
9897ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)))
99983adant1 1077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)))
100993imp 1254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)
101 ffun 6035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥:suc 𝑚𝐴 → Fun 𝑥)
102101adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → Fun 𝑥)
10360, 61funsn 5927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Fun {⟨dom 𝑥, 𝑧⟩}
104102, 103jctir 560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (Fun 𝑥 ∧ Fun {⟨dom 𝑥, 𝑧⟩}))
10561dmsnop 5597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 dom {⟨dom 𝑥, 𝑧⟩} = {dom 𝑥}
106105ineq2i 3803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = (dom 𝑥 ∩ {dom 𝑥})
107 disjsn 4237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((dom 𝑥 ∩ {dom 𝑥}) = ∅ ↔ ¬ dom 𝑥 ∈ dom 𝑥)
10877, 107sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∩ {dom 𝑥}) = ∅)
109106, 108syl5eq 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = ∅)
11070, 109sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = ∅)
111 funun 5920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((Fun 𝑥 ∧ Fun {⟨dom 𝑥, 𝑧⟩}) ∧ (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = ∅) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
112104, 110, 111syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
113 ssun1 3768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})
114113a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
115 nnord 7058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑚 ∈ ω → Ord 𝑚)
116 0elsuc 7020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (Ord 𝑚 → ∅ ∈ suc 𝑚)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑚 ∈ ω → ∅ ∈ suc 𝑚)
118117adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ∅ ∈ suc 𝑚)
11970eleq2d 2685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥:suc 𝑚𝐴 → (∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚))
120119adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚))
121118, 120mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ∅ ∈ dom 𝑥)
122 funssfv 6196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ ∅ ∈ dom 𝑥) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = (𝑥‘∅))
123112, 114, 121, 122syl3anc 1324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = (𝑥‘∅))
124123eqeq1d 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ↔ (𝑥‘∅) = 𝐶))
125124ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ↔ (𝑥‘∅) = 𝐶))
1261253adant1 1077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ↔ (𝑥‘∅) = 𝐶))
127126biimpar 502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ (𝑥‘∅) = 𝐶) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶)
128127adantrl 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶)
1291283adant2 1078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶)
130 nfra1 2938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑘𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))
131 nfv 1841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑘 𝑥:suc 𝑚𝐴
132 nfv 1841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑘 𝑚 ∈ ω
133130, 131, 132nf3an 1829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑘(∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)
134 nfv 1841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑘 𝑧 ∈ (𝐹‘(𝑥𝑚))
135 nfv 1841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑘(𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)
136133, 134, 135nf3an 1829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑘((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶))
137 simplr 791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → 𝑘 ∈ suc 𝑚)
138 elsuci 5779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑘 ∈ suc 𝑚 → (𝑘𝑚𝑘 = 𝑚))
139 rsp 2926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑘𝑚 → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
140139impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑘𝑚 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)))
141140ad2ant2lr 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚)) → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)))
1421413adant3 1079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)))
143112adantlr 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
144113a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
145 ordsucelsuc 7007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (Ord 𝑚 → (𝑘𝑚 ↔ suc 𝑘 ∈ suc 𝑚))
146115, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (𝑚 ∈ ω → (𝑘𝑚 ↔ suc 𝑘 ∈ suc 𝑚))
147146biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘𝑚) → suc 𝑘 ∈ suc 𝑚)
148 eleq2 2688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (dom 𝑥 = suc 𝑚 → (suc 𝑘 ∈ dom 𝑥 ↔ suc 𝑘 ∈ suc 𝑚))
149148biimparc 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((suc 𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚) → suc 𝑘 ∈ dom 𝑥)
150147, 70, 149syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → suc 𝑘 ∈ dom 𝑥)
151 funssfv 6196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ suc 𝑘 ∈ dom 𝑥) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = (𝑥‘suc 𝑘))
152143, 144, 150, 151syl3anc 1324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = (𝑥‘suc 𝑘))
1531523adant2 1078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = (𝑥‘suc 𝑘))
1541123adant2 1078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
155113a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
156 eleq2 2688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (dom 𝑥 = suc 𝑚 → (𝑘 ∈ dom 𝑥𝑘 ∈ suc 𝑚))
157156biimparc 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚) → 𝑘 ∈ dom 𝑥)
15870, 157sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → 𝑘 ∈ dom 𝑥)
1591583adant1 1077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → 𝑘 ∈ dom 𝑥)
160 funssfv 6196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑘 ∈ dom 𝑥) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
161154, 155, 159, 160syl3anc 1324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
1621613adant1r 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
163162fveq2d 6182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) = (𝐹‘(𝑥𝑘)))
164153, 163eleq12d 2693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
1651643adant2l 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
166142, 165mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))
167166a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
1681673expib 1266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚 ∈ ω ∧ 𝑘𝑚) → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
169168expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘𝑚 → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
1701123adant1 1077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
171 ssun2 3769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 {⟨dom 𝑥, 𝑧⟩} ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})
172171a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → {⟨dom 𝑥, 𝑧⟩} ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
173 suceq 5778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 (𝑘 = 𝑚 → suc 𝑘 = suc 𝑚)
174173eqeq2d 2630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (𝑘 = 𝑚 → (dom 𝑥 = suc 𝑘 ↔ dom 𝑥 = suc 𝑚))
175174biimpar 502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚) → dom 𝑥 = suc 𝑘)
17660snid 4199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 dom 𝑥 ∈ {dom 𝑥}
177176, 105eleqtrri 2698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 dom 𝑥 ∈ dom {⟨dom 𝑥, 𝑧⟩}
178175, 177syl6eqelr 2708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚) → suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩})
17970, 178sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑘 = 𝑚𝑥:suc 𝑚𝐴) → suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩})
1801793adant2 1078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩})
181 funssfv 6196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ {⟨dom 𝑥, 𝑧⟩} ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩}) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘))
182170, 172, 180, 181syl3anc 1324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘))
1831753adant2 1078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑘 = 𝑚𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → dom 𝑥 = suc 𝑘)
18460, 61fvsn 6431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ({⟨dom 𝑥, 𝑧⟩}‘dom 𝑥) = 𝑧
185 fveq2 6178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (dom 𝑥 = suc 𝑘 → ({⟨dom 𝑥, 𝑧⟩}‘dom 𝑥) = ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘))
186184, 185syl5reqr 2669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (dom 𝑥 = suc 𝑘 → ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘) = 𝑧)
187183, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘) = 𝑧)
18870, 187syl3an3 1359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘) = 𝑧)
189182, 188eqtrd 2654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = 𝑧)
1901893expa 1263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = 𝑧)
1911903adant2 1078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = 𝑧)
1921613adant1l 1316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
193 fveq2 6178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑘 = 𝑚 → (𝑥𝑘) = (𝑥𝑚))
194193adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑘 = 𝑚𝑚 ∈ ω) → (𝑥𝑘) = (𝑥𝑚))
1951943ad2ant1 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (𝑥𝑘) = (𝑥𝑚))
196192, 195eqtrd 2654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑚))
197196fveq2d 6182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) = (𝐹‘(𝑥𝑚)))
198191, 197eleq12d 2693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ 𝑧 ∈ (𝐹‘(𝑥𝑚))))
1991983adant2l 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ 𝑧 ∈ (𝐹‘(𝑥𝑚))))
200199biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
2012003expib 1266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑘 = 𝑚𝑚 ∈ ω) → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
202201ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = 𝑚 → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
203169, 202jaoi 394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑘𝑚𝑘 = 𝑚) → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
204138, 203syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑘 ∈ suc 𝑚 → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
205204com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑘 ∈ suc 𝑚 → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
206137, 205mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
207206ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) → (𝑥:suc 𝑚𝐴 → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
208207expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑘 ∈ suc 𝑚 → (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑥:suc 𝑚𝐴 → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))))
2092083impd 1279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ suc 𝑚 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
210209impd 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ suc 𝑚 → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚))) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
211210com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚))) → (𝑘 ∈ suc 𝑚 → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
2122113adant3 1079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → (𝑘 ∈ suc 𝑚 → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
213136, 212ralrimi 2954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))
214 suceq 5778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑝 = suc 𝑚 → suc 𝑝 = suc suc 𝑚)
215214feq2d 6018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑝 = suc 𝑚 → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ↔ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
216 raleq 3133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑝 = suc 𝑚 → (∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
217215, 2163anbi13d 1399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑝 = suc 𝑚 → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))) ↔ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
218217rspcev 3304 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((suc 𝑚 ∈ ω ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))) → ∃𝑝 ∈ ω ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
21958, 100, 129, 213, 218syl13anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ∃𝑝 ∈ ω ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
220 snex 4899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {⟨dom 𝑥, 𝑧⟩} ∈ V
22134, 220unex 6941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ V
22222, 23, 221axdc3lem3 9259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆 ↔ ∃𝑝 ∈ ω ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
223219, 222sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)
2242233coml 1270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)
2252243exp 1262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)))
226225expd 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ (𝐹‘(𝑥𝑚)) → (𝑧𝐴 → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))))
22755, 226sylcom 30 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))))
2282273impd 1279 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))
229228ex 450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (𝑥:suc 𝑚𝐴 → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)))
230229com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥:suc 𝑚𝐴 → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)))
23151, 230mpdi 45 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))
232231imp 445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)
233 resundir 5399 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = ((𝑥 ↾ dom 𝑥) ∪ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥))
234 frel 6037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥:suc 𝑚𝐴 → Rel 𝑥)
235 resdm 5429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Rel 𝑥 → (𝑥 ↾ dom 𝑥) = 𝑥)
236234, 235syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥:suc 𝑚𝐴 → (𝑥 ↾ dom 𝑥) = 𝑥)
237236adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (𝑥 ↾ dom 𝑥) = 𝑥)
23870, 74sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → dom 𝑥 ∈ ω)
23975, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (dom 𝑥 ∈ ω → ¬ dom 𝑥 ∈ dom 𝑥)
240 incom 3797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ({dom 𝑥} ∩ dom 𝑥) = (dom 𝑥 ∩ {dom 𝑥})
241240eqeq1i 2625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (({dom 𝑥} ∩ dom 𝑥) = ∅ ↔ (dom 𝑥 ∩ {dom 𝑥}) = ∅)
24260, 61fnsn 5934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {⟨dom 𝑥, 𝑧⟩} Fn {dom 𝑥}
243 fnresdisj 5989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ({⟨dom 𝑥, 𝑧⟩} Fn {dom 𝑥} → (({dom 𝑥} ∩ dom 𝑥) = ∅ ↔ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅))
244242, 243ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (({dom 𝑥} ∩ dom 𝑥) = ∅ ↔ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
245241, 244, 1073bitr3ri 291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (¬ dom 𝑥 ∈ dom 𝑥 ↔ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
246239, 245sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (dom 𝑥 ∈ ω → ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
247238, 246syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
248237, 247uneq12d 3760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ↾ dom 𝑥) ∪ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥)) = (𝑥 ∪ ∅))
249 un0 3958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∪ ∅) = 𝑥
250248, 249syl6eq 2670 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ↾ dom 𝑥) ∪ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥)) = 𝑥)
251233, 250syl5eq 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
252251ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
2532523adant1 1077 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
2542533ad2ant3 1082 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
255254adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
256105uneq2i 3756 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom 𝑥 ∪ dom {⟨dom 𝑥, 𝑧⟩}) = (dom 𝑥 ∪ {dom 𝑥})
257 dmun 5320 . . . . . . . . . . . . . . . . . . . . . . . 24 dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = (dom 𝑥 ∪ dom {⟨dom 𝑥, 𝑧⟩})
258 df-suc 5717 . . . . . . . . . . . . . . . . . . . . . . . 24 suc dom 𝑥 = (dom 𝑥 ∪ {dom 𝑥})
259256, 257, 2583eqtr4i 2652 . . . . . . . . . . . . . . . . . . . . . . 23 dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥
260255, 259jctil 559 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → (dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥))
261 dmeq 5313 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → dom 𝑦 = dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
262261eqeq1d 2622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → (dom 𝑦 = suc dom 𝑥 ↔ dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥))
263 reseq1 5379 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → (𝑦 ↾ dom 𝑥) = ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥))
264263eqeq1d 2622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → ((𝑦 ↾ dom 𝑥) = 𝑥 ↔ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥))
265262, 264anbi12d 746 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → ((dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥) ↔ (dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)))
266265rspcev 3304 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆 ∧ (dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
267232, 260, 266syl2anc 692 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
2682673exp2 1283 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))))
269268exlimdv 1859 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))))
270269adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))))
27150, 270mpd 15 . . . . . . . . . . . . . . . . 17 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
272271com3r 87 . . . . . . . . . . . . . . . 16 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥‘∅) = 𝐶 → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
27336, 272mpan2d 709 . . . . . . . . . . . . . . 15 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑥‘∅) = 𝐶 → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
274273com3r 87 . . . . . . . . . . . . . 14 ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
2752743expd 1282 . . . . . . . . . . . . 13 ((𝑥‘∅) = 𝐶 → (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑥:suc 𝑚𝐴 → (𝑚 ∈ ω → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))))
276275com3r 87 . . . . . . . . . . . 12 (𝑥:suc 𝑚𝐴 → ((𝑥‘∅) = 𝐶 → (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑚 ∈ ω → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))))
2772763imp 1254 . . . . . . . . . . 11 ((𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝑚 ∈ ω → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
278277com12 32 . . . . . . . . . 10 (𝑚 ∈ ω → ((𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
279278rexlimiv 3023 . . . . . . . . 9 (∃𝑚 ∈ ω (𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))
28035, 279sylbi 207 . . . . . . . 8 (𝑥𝑆 → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))
281280impcom 446 . . . . . . 7 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
282 rabn0 3949 . . . . . . 7 ({𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ≠ ∅ ↔ ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
283281, 282sylibr 224 . . . . . 6 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ≠ ∅)
28430rabex 4804 . . . . . . . 8 {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ V
285284elsn 4183 . . . . . . 7 ({𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ {∅} ↔ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} = ∅)
286285necon3bbii 2838 . . . . . 6 (¬ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ {∅} ↔ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ≠ ∅)
287283, 286sylibr 224 . . . . 5 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → ¬ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ {∅})
28833, 287eldifd 3578 . . . 4 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ (𝒫 𝑆 ∖ {∅}))
289 axdc3lem4.3 . . . 4 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
290288, 289fmptd 6371 . . 3 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → 𝐺:𝑆⟶(𝒫 𝑆 ∖ {∅}))
29130axdc2 9256 . . 3 ((𝑆 ≠ ∅ ∧ 𝐺:𝑆⟶(𝒫 𝑆 ∖ {∅})) → ∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))))
29228, 290, 291syl2an 494 . 2 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))))
29322, 23, 289axdc3lem2 9258 . 2 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
294292, 293syl 17 1 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wex 1702  wcel 1988  {cab 2606  wne 2791  wral 2909  wrex 2910  {crab 2913  Vcvv 3195  cdif 3564  cun 3565  cin 3566  wss 3567  c0 3907  𝒫 cpw 4149  {csn 4168  cop 4174  cmpt 4720  dom cdm 5104  cres 5106  Rel wrel 5109  Ord word 5710  suc csuc 5713  Fun wfun 5870   Fn wfn 5871  wf 5872  cfv 5876  ωcom 7050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-dc 9253
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-om 7051  df-1o 7545
This theorem is referenced by:  axdc3  9261
  Copyright terms: Public domain W3C validator