MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem4 Structured version   Visualization version   GIF version

Theorem axdc3lem4 9477
Description: Lemma for axdc3 9478. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 9470 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (𝑛):𝑚𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 9470 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that 𝑆 is nonempty, and that 𝐺 always maps to a nonempty subset of 𝑆, so that we can apply axdc2 9473. See axdc3lem2 9475 for the rest of the proof. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem4.1 𝐴 ∈ V
axdc3lem4.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem4.3 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
Assertion
Ref Expression
axdc3lem4 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝐴,𝑛,𝑥,𝑘,𝑠   𝐶,𝑔,𝑘   𝐶,𝑛,𝑠   𝑔,𝐹,𝑘   𝑛,𝐹,𝑥,𝑠   𝑘,𝐺   𝑆,𝑘,𝑠,𝑥   𝑦,𝑆,𝑥   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝑆(𝑔,𝑛)   𝐹(𝑦)   𝐺(𝑥,𝑦,𝑔,𝑛,𝑠)

Proof of Theorem axdc3lem4
Dummy variables 𝑚 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7232 . . . . . 6 ∅ ∈ ω
2 eqid 2771 . . . . . . . . . 10 {⟨∅, 𝐶⟩} = {⟨∅, 𝐶⟩}
3 fsng 6547 . . . . . . . . . . 11 ((∅ ∈ ω ∧ 𝐶𝐴) → ({⟨∅, 𝐶⟩}:{∅}⟶{𝐶} ↔ {⟨∅, 𝐶⟩} = {⟨∅, 𝐶⟩}))
41, 3mpan 670 . . . . . . . . . 10 (𝐶𝐴 → ({⟨∅, 𝐶⟩}:{∅}⟶{𝐶} ↔ {⟨∅, 𝐶⟩} = {⟨∅, 𝐶⟩}))
52, 4mpbiri 248 . . . . . . . . 9 (𝐶𝐴 → {⟨∅, 𝐶⟩}:{∅}⟶{𝐶})
6 snssi 4474 . . . . . . . . 9 (𝐶𝐴 → {𝐶} ⊆ 𝐴)
75, 6fssd 6197 . . . . . . . 8 (𝐶𝐴 → {⟨∅, 𝐶⟩}:{∅}⟶𝐴)
8 suc0 5942 . . . . . . . . 9 suc ∅ = {∅}
98feq2i 6177 . . . . . . . 8 ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ↔ {⟨∅, 𝐶⟩}:{∅}⟶𝐴)
107, 9sylibr 224 . . . . . . 7 (𝐶𝐴 → {⟨∅, 𝐶⟩}:suc ∅⟶𝐴)
11 fvsng 6591 . . . . . . . 8 ((∅ ∈ ω ∧ 𝐶𝐴) → ({⟨∅, 𝐶⟩}‘∅) = 𝐶)
121, 11mpan 670 . . . . . . 7 (𝐶𝐴 → ({⟨∅, 𝐶⟩}‘∅) = 𝐶)
13 ral0 4217 . . . . . . . 8 𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))
1413a1i 11 . . . . . . 7 (𝐶𝐴 → ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)))
1510, 12, 143jca 1122 . . . . . 6 (𝐶𝐴 → ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
16 suceq 5933 . . . . . . . . 9 (𝑚 = ∅ → suc 𝑚 = suc ∅)
1716feq2d 6171 . . . . . . . 8 (𝑚 = ∅ → ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ↔ {⟨∅, 𝐶⟩}:suc ∅⟶𝐴))
18 raleq 3287 . . . . . . . 8 (𝑚 = ∅ → (∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)) ↔ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
1917, 183anbi13d 1549 . . . . . . 7 (𝑚 = ∅ → (({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))) ↔ ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)))))
2019rspcev 3460 . . . . . 6 ((∅ ∈ ω ∧ ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)))) → ∃𝑚 ∈ ω ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
211, 15, 20sylancr 575 . . . . 5 (𝐶𝐴 → ∃𝑚 ∈ ω ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
22 axdc3lem4.1 . . . . . 6 𝐴 ∈ V
23 axdc3lem4.2 . . . . . 6 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
24 snex 5036 . . . . . 6 {⟨∅, 𝐶⟩} ∈ V
2522, 23, 24axdc3lem3 9476 . . . . 5 ({⟨∅, 𝐶⟩} ∈ 𝑆 ↔ ∃𝑚 ∈ ω ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
2621, 25sylibr 224 . . . 4 (𝐶𝐴 → {⟨∅, 𝐶⟩} ∈ 𝑆)
27 ne0i 4069 . . . 4 ({⟨∅, 𝐶⟩} ∈ 𝑆𝑆 ≠ ∅)
2826, 27syl 17 . . 3 (𝐶𝐴𝑆 ≠ ∅)
29 ssrab2 3836 . . . . . . 7 {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ⊆ 𝑆
3022, 23axdc3lem 9474 . . . . . . . 8 𝑆 ∈ V
3130elpw2 4959 . . . . . . 7 ({𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ 𝒫 𝑆 ↔ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ⊆ 𝑆)
3229, 31mpbir 221 . . . . . 6 {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ 𝒫 𝑆
3332a1i 11 . . . . 5 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ 𝒫 𝑆)
34 vex 3354 . . . . . . . . . 10 𝑥 ∈ V
3522, 23, 34axdc3lem3 9476 . . . . . . . . 9 (𝑥𝑆 ↔ ∃𝑚 ∈ ω (𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
36 simp2 1131 . . . . . . . . . . . . . . . 16 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → 𝑥:suc 𝑚𝐴)
37 vex 3354 . . . . . . . . . . . . . . . . . . . . . 22 𝑚 ∈ V
3837sucid 5947 . . . . . . . . . . . . . . . . . . . . 21 𝑚 ∈ suc 𝑚
39 ffvelrn 6500 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥:suc 𝑚𝐴𝑚 ∈ suc 𝑚) → (𝑥𝑚) ∈ 𝐴)
4038, 39mpan2 671 . . . . . . . . . . . . . . . . . . . 20 (𝑥:suc 𝑚𝐴 → (𝑥𝑚) ∈ 𝐴)
41 ffvelrn 6500 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑥𝑚) ∈ 𝐴) → (𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}))
4240, 41sylan2 580 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}))
43 eldifn 3884 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}) → ¬ (𝐹‘(𝑥𝑚)) ∈ {∅})
44 fvex 6342 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹‘(𝑥𝑚)) ∈ V
4544elsn 4331 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘(𝑥𝑚)) ∈ {∅} ↔ (𝐹‘(𝑥𝑚)) = ∅)
4645necon3bbii 2990 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝐹‘(𝑥𝑚)) ∈ {∅} ↔ (𝐹‘(𝑥𝑚)) ≠ ∅)
47 n0 4078 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘(𝑥𝑚)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
4846, 47bitri 264 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐹‘(𝑥𝑚)) ∈ {∅} ↔ ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
4943, 48sylib 208 . . . . . . . . . . . . . . . . . . 19 ((𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
5042, 49syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
51 simp32 1252 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → 𝑥:suc 𝑚𝐴)
52 eldifi 3883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹‘(𝑥𝑚)) ∈ 𝒫 𝐴)
53 elelpwi 4310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝐹‘(𝑥𝑚)) ∈ 𝒫 𝐴) → 𝑧𝐴)
5453expcom 398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹‘(𝑥𝑚)) ∈ 𝒫 𝐴 → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → 𝑧𝐴))
5542, 52, 543syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → 𝑧𝐴))
56 peano2 7233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚 ∈ ω → suc 𝑚 ∈ ω)
57563ad2ant3 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → suc 𝑚 ∈ ω)
58573ad2ant1 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → suc 𝑚 ∈ ω)
59 simplr 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → 𝑥:suc 𝑚𝐴)
6034dmex 7246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 dom 𝑥 ∈ V
61 vex 3354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 𝑧 ∈ V
62 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 {⟨dom 𝑥, 𝑧⟩} = {⟨dom 𝑥, 𝑧⟩}
63 fsng 6547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((dom 𝑥 ∈ V ∧ 𝑧 ∈ V) → ({⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧} ↔ {⟨dom 𝑥, 𝑧⟩} = {⟨dom 𝑥, 𝑧⟩}))
6462, 63mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((dom 𝑥 ∈ V ∧ 𝑧 ∈ V) → {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧})
6560, 61, 64mp2an 672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧}
66 simpr 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → 𝑧𝐴)
6766snssd 4475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → {𝑧} ⊆ 𝐴)
68 fss 6196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (({⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧} ∧ {𝑧} ⊆ 𝐴) → {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶𝐴)
6965, 67, 68sylancr 575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶𝐴)
70 fdm 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥:suc 𝑚𝐴 → dom 𝑥 = suc 𝑚)
7156adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → suc 𝑚 ∈ ω)
72 eleq1 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (dom 𝑥 = suc 𝑚 → (dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω))
7372adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω))
7471, 73mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → dom 𝑥 ∈ ω)
75 nnord 7220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (dom 𝑥 ∈ ω → Ord dom 𝑥)
76 ordirr 5884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (Ord dom 𝑥 → ¬ dom 𝑥 ∈ dom 𝑥)
7774, 75, 763syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → ¬ dom 𝑥 ∈ dom 𝑥)
78 eleq2 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (dom 𝑥 = suc 𝑚 → (dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚))
7978adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚))
8077, 79mtbid 313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → ¬ dom 𝑥 ∈ suc 𝑚)
81 disjsn 4383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((suc 𝑚 ∩ {dom 𝑥}) = ∅ ↔ ¬ dom 𝑥 ∈ suc 𝑚)
8280, 81sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (suc 𝑚 ∩ {dom 𝑥}) = ∅)
8370, 82sylan2 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (suc 𝑚 ∩ {dom 𝑥}) = ∅)
8483adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (suc 𝑚 ∩ {dom 𝑥}) = ∅)
85 fun2 6207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑥:suc 𝑚𝐴 ∧ {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶𝐴) ∧ (suc 𝑚 ∩ {dom 𝑥}) = ∅) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):(suc 𝑚 ∪ {dom 𝑥})⟶𝐴)
8659, 69, 84, 85syl21anc 1475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):(suc 𝑚 ∪ {dom 𝑥})⟶𝐴)
87 sneq 4326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (dom 𝑥 = suc 𝑚 → {dom 𝑥} = {suc 𝑚})
8887uneq2d 3918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (dom 𝑥 = suc 𝑚 → (suc 𝑚 ∪ {dom 𝑥}) = (suc 𝑚 ∪ {suc 𝑚}))
89 df-suc 5872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 suc suc 𝑚 = (suc 𝑚 ∪ {suc 𝑚})
9088, 89syl6eqr 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (dom 𝑥 = suc 𝑚 → (suc 𝑚 ∪ {dom 𝑥}) = suc suc 𝑚)
9170, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥:suc 𝑚𝐴 → (suc 𝑚 ∪ {dom 𝑥}) = suc suc 𝑚)
9291ad2antlr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (suc 𝑚 ∪ {dom 𝑥}) = suc suc 𝑚)
9392feq2d 6171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):(suc 𝑚 ∪ {dom 𝑥})⟶𝐴 ↔ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
9486, 93mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)
9594ex 397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (𝑧𝐴 → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
9695adantrd 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
9796a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)))
9897ancoms 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)))
99983adant1 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)))
100993imp 1101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)
101 ffun 6188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥:suc 𝑚𝐴 → Fun 𝑥)
102101adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → Fun 𝑥)
10360, 61funsn 6082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Fun {⟨dom 𝑥, 𝑧⟩}
104102, 103jctir 510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (Fun 𝑥 ∧ Fun {⟨dom 𝑥, 𝑧⟩}))
10561dmsnop 5751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 dom {⟨dom 𝑥, 𝑧⟩} = {dom 𝑥}
106105ineq2i 3962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = (dom 𝑥 ∩ {dom 𝑥})
107 disjsn 4383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((dom 𝑥 ∩ {dom 𝑥}) = ∅ ↔ ¬ dom 𝑥 ∈ dom 𝑥)
10877, 107sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∩ {dom 𝑥}) = ∅)
109106, 108syl5eq 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = ∅)
11070, 109sylan2 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = ∅)
111 funun 6075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((Fun 𝑥 ∧ Fun {⟨dom 𝑥, 𝑧⟩}) ∧ (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = ∅) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
112104, 110, 111syl2anc 573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
113 ssun1 3927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})
114113a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
115 nnord 7220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑚 ∈ ω → Ord 𝑚)
116 0elsuc 7182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (Ord 𝑚 → ∅ ∈ suc 𝑚)
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑚 ∈ ω → ∅ ∈ suc 𝑚)
118117adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ∅ ∈ suc 𝑚)
11970eleq2d 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥:suc 𝑚𝐴 → (∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚))
120119adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚))
121118, 120mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ∅ ∈ dom 𝑥)
122 funssfv 6350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ ∅ ∈ dom 𝑥) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = (𝑥‘∅))
123112, 114, 121, 122syl3anc 1476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = (𝑥‘∅))
124123eqeq1d 2773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ↔ (𝑥‘∅) = 𝐶))
125124ancoms 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ↔ (𝑥‘∅) = 𝐶))
1261253adant1 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ↔ (𝑥‘∅) = 𝐶))
127126biimpar 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ (𝑥‘∅) = 𝐶) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶)
128127adantrl 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶)
1291283adant2 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶)
130 nfra1 3090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑘𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))
131 nfv 1995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑘 𝑥:suc 𝑚𝐴
132 nfv 1995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑘 𝑚 ∈ ω
133130, 131, 132nf3an 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑘(∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)
134 nfv 1995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑘 𝑧 ∈ (𝐹‘(𝑥𝑚))
135 nfv 1995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑘(𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)
136133, 134, 135nf3an 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑘((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶))
137 simplr 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → 𝑘 ∈ suc 𝑚)
138 elsuci 5934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑘 ∈ suc 𝑚 → (𝑘𝑚𝑘 = 𝑚))
139 rsp 3078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑘𝑚 → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
140139impcom 394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑘𝑚 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)))
141140ad2ant2lr 742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚)) → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)))
1421413adant3 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)))
143112adantlr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
144113a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
145 ordsucelsuc 7169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (Ord 𝑚 → (𝑘𝑚 ↔ suc 𝑘 ∈ suc 𝑚))
146115, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (𝑚 ∈ ω → (𝑘𝑚 ↔ suc 𝑘 ∈ suc 𝑚))
147146biimpa 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘𝑚) → suc 𝑘 ∈ suc 𝑚)
148 eleq2 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (dom 𝑥 = suc 𝑚 → (suc 𝑘 ∈ dom 𝑥 ↔ suc 𝑘 ∈ suc 𝑚))
149148biimparc 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((suc 𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚) → suc 𝑘 ∈ dom 𝑥)
150147, 70, 149syl2an 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → suc 𝑘 ∈ dom 𝑥)
151 funssfv 6350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ suc 𝑘 ∈ dom 𝑥) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = (𝑥‘suc 𝑘))
152143, 144, 150, 151syl3anc 1476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = (𝑥‘suc 𝑘))
1531523adant2 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = (𝑥‘suc 𝑘))
1541123adant2 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
155113a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
156 eleq2 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (dom 𝑥 = suc 𝑚 → (𝑘 ∈ dom 𝑥𝑘 ∈ suc 𝑚))
157156biimparc 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚) → 𝑘 ∈ dom 𝑥)
15870, 157sylan2 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → 𝑘 ∈ dom 𝑥)
1591583adant1 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → 𝑘 ∈ dom 𝑥)
160 funssfv 6350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑘 ∈ dom 𝑥) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
161154, 155, 159, 160syl3anc 1476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
1621613adant1r 1187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
163162fveq2d 6336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) = (𝐹‘(𝑥𝑘)))
164153, 163eleq12d 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
1651643adant2l 1189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
166142, 165mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))
167166a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
1681673expib 1116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚 ∈ ω ∧ 𝑘𝑚) → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
169168expcom 398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘𝑚 → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
1701123adant1 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
171 ssun2 3928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 {⟨dom 𝑥, 𝑧⟩} ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})
172171a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → {⟨dom 𝑥, 𝑧⟩} ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
173 suceq 5933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 (𝑘 = 𝑚 → suc 𝑘 = suc 𝑚)
174173eqeq2d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (𝑘 = 𝑚 → (dom 𝑥 = suc 𝑘 ↔ dom 𝑥 = suc 𝑚))
175174biimpar 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚) → dom 𝑥 = suc 𝑘)
17660snid 4347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 dom 𝑥 ∈ {dom 𝑥}
177176, 105eleqtrri 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 dom 𝑥 ∈ dom {⟨dom 𝑥, 𝑧⟩}
178175, 177syl6eqelr 2859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚) → suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩})
17970, 178sylan2 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑘 = 𝑚𝑥:suc 𝑚𝐴) → suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩})
1801793adant2 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩})
181 funssfv 6350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ {⟨dom 𝑥, 𝑧⟩} ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩}) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘))
182170, 172, 180, 181syl3anc 1476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘))
1831753adant2 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑘 = 𝑚𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → dom 𝑥 = suc 𝑘)
18460, 61fvsn 6590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ({⟨dom 𝑥, 𝑧⟩}‘dom 𝑥) = 𝑧
185 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (dom 𝑥 = suc 𝑘 → ({⟨dom 𝑥, 𝑧⟩}‘dom 𝑥) = ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘))
186184, 185syl5reqr 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (dom 𝑥 = suc 𝑘 → ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘) = 𝑧)
187183, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘) = 𝑧)
18870, 187syl3an3 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘) = 𝑧)
189182, 188eqtrd 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = 𝑧)
1901893expa 1111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = 𝑧)
1911903adant2 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = 𝑧)
1921613adant1l 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
193 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑘 = 𝑚 → (𝑥𝑘) = (𝑥𝑚))
194193adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑘 = 𝑚𝑚 ∈ ω) → (𝑥𝑘) = (𝑥𝑚))
1951943ad2ant1 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (𝑥𝑘) = (𝑥𝑚))
196192, 195eqtrd 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑚))
197196fveq2d 6336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) = (𝐹‘(𝑥𝑚)))
198191, 197eleq12d 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ 𝑧 ∈ (𝐹‘(𝑥𝑚))))
1991983adant2l 1189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ 𝑧 ∈ (𝐹‘(𝑥𝑚))))
200199biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
2012003expib 1116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑘 = 𝑚𝑚 ∈ ω) → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
202201ex 397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = 𝑚 → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
203169, 202jaoi 844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑘𝑚𝑘 = 𝑚) → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
204138, 203syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑘 ∈ suc 𝑚 → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
205204com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑘 ∈ suc 𝑚 → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
206137, 205mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
207206ex 397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) → (𝑥:suc 𝑚𝐴 → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
208207expcom 398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑘 ∈ suc 𝑚 → (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑥:suc 𝑚𝐴 → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))))
2092083impd 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ suc 𝑚 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
210209impd 396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ suc 𝑚 → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚))) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
211210com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚))) → (𝑘 ∈ suc 𝑚 → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
2122113adant3 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → (𝑘 ∈ suc 𝑚 → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
213136, 212ralrimi 3106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))
214 suceq 5933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑝 = suc 𝑚 → suc 𝑝 = suc suc 𝑚)
215214feq2d 6171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑝 = suc 𝑚 → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ↔ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
216 raleq 3287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑝 = suc 𝑚 → (∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
217215, 2163anbi13d 1549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑝 = suc 𝑚 → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))) ↔ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
218217rspcev 3460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((suc 𝑚 ∈ ω ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))) → ∃𝑝 ∈ ω ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
21958, 100, 129, 213, 218syl13anc 1478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ∃𝑝 ∈ ω ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
220 snex 5036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {⟨dom 𝑥, 𝑧⟩} ∈ V
22134, 220unex 7103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ V
22222, 23, 221axdc3lem3 9476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆 ↔ ∃𝑝 ∈ ω ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
223219, 222sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)
2242233coml 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)
2252243exp 1112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)))
226225expd 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ (𝐹‘(𝑥𝑚)) → (𝑧𝐴 → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))))
22755, 226sylcom 30 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))))
2282273impd 1441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))
229228ex 397 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (𝑥:suc 𝑚𝐴 → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)))
230229com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥:suc 𝑚𝐴 → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)))
23151, 230mpdi 45 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))
232231imp 393 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)
233 resundir 5552 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = ((𝑥 ↾ dom 𝑥) ∪ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥))
234 frel 6190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥:suc 𝑚𝐴 → Rel 𝑥)
235 resdm 5582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Rel 𝑥 → (𝑥 ↾ dom 𝑥) = 𝑥)
236234, 235syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥:suc 𝑚𝐴 → (𝑥 ↾ dom 𝑥) = 𝑥)
237236adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (𝑥 ↾ dom 𝑥) = 𝑥)
23870, 74sylan2 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → dom 𝑥 ∈ ω)
23975, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (dom 𝑥 ∈ ω → ¬ dom 𝑥 ∈ dom 𝑥)
240 incom 3956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ({dom 𝑥} ∩ dom 𝑥) = (dom 𝑥 ∩ {dom 𝑥})
241240eqeq1i 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (({dom 𝑥} ∩ dom 𝑥) = ∅ ↔ (dom 𝑥 ∩ {dom 𝑥}) = ∅)
24260, 61fnsn 6087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {⟨dom 𝑥, 𝑧⟩} Fn {dom 𝑥}
243 fnresdisj 6141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ({⟨dom 𝑥, 𝑧⟩} Fn {dom 𝑥} → (({dom 𝑥} ∩ dom 𝑥) = ∅ ↔ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅))
244242, 243ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (({dom 𝑥} ∩ dom 𝑥) = ∅ ↔ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
245241, 244, 1073bitr3ri 291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (¬ dom 𝑥 ∈ dom 𝑥 ↔ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
246239, 245sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (dom 𝑥 ∈ ω → ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
247238, 246syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
248237, 247uneq12d 3919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ↾ dom 𝑥) ∪ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥)) = (𝑥 ∪ ∅))
249 un0 4111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∪ ∅) = 𝑥
250248, 249syl6eq 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ↾ dom 𝑥) ∪ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥)) = 𝑥)
251233, 250syl5eq 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
252251ancoms 455 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
2532523adant1 1124 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
2542533ad2ant3 1129 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
255254adantl 467 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
256105uneq2i 3915 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom 𝑥 ∪ dom {⟨dom 𝑥, 𝑧⟩}) = (dom 𝑥 ∪ {dom 𝑥})
257 dmun 5469 . . . . . . . . . . . . . . . . . . . . . . . 24 dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = (dom 𝑥 ∪ dom {⟨dom 𝑥, 𝑧⟩})
258 df-suc 5872 . . . . . . . . . . . . . . . . . . . . . . . 24 suc dom 𝑥 = (dom 𝑥 ∪ {dom 𝑥})
259256, 257, 2583eqtr4i 2803 . . . . . . . . . . . . . . . . . . . . . . 23 dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥
260255, 259jctil 509 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → (dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥))
261 dmeq 5462 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → dom 𝑦 = dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
262261eqeq1d 2773 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → (dom 𝑦 = suc dom 𝑥 ↔ dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥))
263 reseq1 5528 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → (𝑦 ↾ dom 𝑥) = ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥))
264263eqeq1d 2773 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → ((𝑦 ↾ dom 𝑥) = 𝑥 ↔ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥))
265262, 264anbi12d 616 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → ((dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥) ↔ (dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)))
266265rspcev 3460 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆 ∧ (dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
267232, 260, 266syl2anc 573 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
2682673exp2 1447 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))))
269268exlimdv 2013 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))))
270269adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))))
27150, 270mpd 15 . . . . . . . . . . . . . . . . 17 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
272271com3r 87 . . . . . . . . . . . . . . . 16 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥‘∅) = 𝐶 → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
27336, 272mpan2d 674 . . . . . . . . . . . . . . 15 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑥‘∅) = 𝐶 → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
274273com3r 87 . . . . . . . . . . . . . 14 ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
2752743expd 1446 . . . . . . . . . . . . 13 ((𝑥‘∅) = 𝐶 → (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑥:suc 𝑚𝐴 → (𝑚 ∈ ω → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))))
276275com3r 87 . . . . . . . . . . . 12 (𝑥:suc 𝑚𝐴 → ((𝑥‘∅) = 𝐶 → (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑚 ∈ ω → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))))
2772763imp 1101 . . . . . . . . . . 11 ((𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝑚 ∈ ω → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
278277com12 32 . . . . . . . . . 10 (𝑚 ∈ ω → ((𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
279278rexlimiv 3175 . . . . . . . . 9 (∃𝑚 ∈ ω (𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))
28035, 279sylbi 207 . . . . . . . 8 (𝑥𝑆 → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))
281280impcom 394 . . . . . . 7 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
282 rabn0 4104 . . . . . . 7 ({𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ≠ ∅ ↔ ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
283281, 282sylibr 224 . . . . . 6 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ≠ ∅)
28430rabex 4946 . . . . . . . 8 {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ V
285284elsn 4331 . . . . . . 7 ({𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ {∅} ↔ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} = ∅)
286285necon3bbii 2990 . . . . . 6 (¬ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ {∅} ↔ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ≠ ∅)
287283, 286sylibr 224 . . . . 5 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → ¬ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ {∅})
28833, 287eldifd 3734 . . . 4 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ (𝒫 𝑆 ∖ {∅}))
289 axdc3lem4.3 . . . 4 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
290288, 289fmptd 6527 . . 3 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → 𝐺:𝑆⟶(𝒫 𝑆 ∖ {∅}))
29130axdc2 9473 . . 3 ((𝑆 ≠ ∅ ∧ 𝐺:𝑆⟶(𝒫 𝑆 ∖ {∅})) → ∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))))
29228, 290, 291syl2an 583 . 2 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))))
29322, 23, 289axdc3lem2 9475 . 2 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
294292, 293syl 17 1 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 834  w3a 1071   = wceq 1631  wex 1852  wcel 2145  {cab 2757  wne 2943  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297  {csn 4316  cop 4322  cmpt 4863  dom cdm 5249  cres 5251  Rel wrel 5254  Ord word 5865  suc csuc 5868  Fun wfun 6025   Fn wfn 6026  wf 6027  cfv 6031  ωcom 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-dc 9470
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7213  df-1o 7713
This theorem is referenced by:  axdc3  9478
  Copyright terms: Public domain W3C validator