MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem3 Structured version   Visualization version   GIF version

Theorem axdc3lem3 9486
Description: Simple substitution lemma for axdc3 9488. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem3.1 𝐴 ∈ V
axdc3lem3.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem3.3 𝐵 ∈ V
Assertion
Ref Expression
axdc3lem3 (𝐵𝑆 ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
Distinct variable groups:   𝐴,𝑚,𝑛   𝐴,𝑠,𝑛   𝐵,𝑘,𝑚,𝑛   𝐵,𝑠,𝑘   𝐶,𝑚,𝑛   𝐶,𝑠   𝑚,𝐹,𝑛   𝐹,𝑠
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑘)   𝑆(𝑘,𝑚,𝑛,𝑠)   𝐹(𝑘)

Proof of Theorem axdc3lem3
StepHypRef Expression
1 axdc3lem3.2 . . 3 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
21eleq2i 2831 . 2 (𝐵𝑆𝐵 ∈ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
3 axdc3lem3.3 . . 3 𝐵 ∈ V
4 feq1 6187 . . . . 5 (𝑠 = 𝐵 → (𝑠:suc 𝑛𝐴𝐵:suc 𝑛𝐴))
5 fveq1 6352 . . . . . 6 (𝑠 = 𝐵 → (𝑠‘∅) = (𝐵‘∅))
65eqeq1d 2762 . . . . 5 (𝑠 = 𝐵 → ((𝑠‘∅) = 𝐶 ↔ (𝐵‘∅) = 𝐶))
7 fveq1 6352 . . . . . . 7 (𝑠 = 𝐵 → (𝑠‘suc 𝑘) = (𝐵‘suc 𝑘))
8 fveq1 6352 . . . . . . . 8 (𝑠 = 𝐵 → (𝑠𝑘) = (𝐵𝑘))
98fveq2d 6357 . . . . . . 7 (𝑠 = 𝐵 → (𝐹‘(𝑠𝑘)) = (𝐹‘(𝐵𝑘)))
107, 9eleq12d 2833 . . . . . 6 (𝑠 = 𝐵 → ((𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
1110ralbidv 3124 . . . . 5 (𝑠 = 𝐵 → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
124, 6, 113anbi123d 1548 . . . 4 (𝑠 = 𝐵 → ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)))))
1312rexbidv 3190 . . 3 (𝑠 = 𝐵 → (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ ∃𝑛 ∈ ω (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)))))
143, 13elab 3490 . 2 (𝐵 ∈ {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ↔ ∃𝑛 ∈ ω (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
15 suceq 5951 . . . . 5 (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚)
1615feq2d 6192 . . . 4 (𝑛 = 𝑚 → (𝐵:suc 𝑛𝐴𝐵:suc 𝑚𝐴))
17 raleq 3277 . . . 4 (𝑛 = 𝑚 → (∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)) ↔ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
1816, 173anbi13d 1550 . . 3 (𝑛 = 𝑚 → ((𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))) ↔ (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘)))))
1918cbvrexv 3311 . 2 (∃𝑛 ∈ ω (𝐵:suc 𝑛𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))) ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
202, 14, 193bitri 286 1 (𝐵𝑆 ↔ ∃𝑚 ∈ ω (𝐵:suc 𝑚𝐴 ∧ (𝐵‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝐵‘suc 𝑘) ∈ (𝐹‘(𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1072   = wceq 1632  wcel 2139  {cab 2746  wral 3050  wrex 3051  Vcvv 3340  c0 4058  suc csuc 5886  wf 6045  cfv 6049  ωcom 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057
This theorem is referenced by:  axdc3lem4  9487
  Copyright terms: Public domain W3C validator