MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem5 Structured version   Visualization version   GIF version

Theorem axcontlem5 25829
Description: Lemma for axcont 25837. Compute the value of 𝐹. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem5.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem5 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
Distinct variable groups:   𝑡,𝐷,𝑥   𝑖,𝑝,𝑡,𝑥,𝑁   𝑃,𝑖,𝑡,𝑥   𝑥,𝑇,𝑖,𝑡   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑍,𝑝,𝑡,𝑥
Allowed substitution hints:   𝐷(𝑖,𝑝)   𝑃(𝑝)   𝑇(𝑝)   𝐹(𝑥,𝑡,𝑖,𝑝)

Proof of Theorem axcontlem5
StepHypRef Expression
1 axcontlem5.1 . . . . . 6 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
2 axcontlem5.2 . . . . . 6 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
31, 2axcontlem2 25826 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
4 f1of 6124 . . . . 5 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷⟶(0[,)+∞))
53, 4syl 17 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷⟶(0[,)+∞))
65ffvelrnda 6345 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → (𝐹𝑃) ∈ (0[,)+∞))
7 eleq1 2687 . . 3 ((𝐹𝑃) = 𝑇 → ((𝐹𝑃) ∈ (0[,)+∞) ↔ 𝑇 ∈ (0[,)+∞)))
86, 7syl5ibcom 235 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑇 ∈ (0[,)+∞)))
9 simpl 473 . . 3 ((𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) → 𝑇 ∈ (0[,)+∞))
109a1i 11 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) → 𝑇 ∈ (0[,)+∞)))
11 f1ofn 6125 . . . . . . 7 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹 Fn 𝐷)
123, 11syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹 Fn 𝐷)
13 fnbrfvb 6223 . . . . . 6 ((𝐹 Fn 𝐷𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
1412, 13sylan 488 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
15143adant3 1079 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
16 eleq1 2687 . . . . . . . 8 (𝑥 = 𝑃 → (𝑥𝐷𝑃𝐷))
17 fveq1 6177 . . . . . . . . . . 11 (𝑥 = 𝑃 → (𝑥𝑖) = (𝑃𝑖))
1817eqeq1d 2622 . . . . . . . . . 10 (𝑥 = 𝑃 → ((𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ (𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))
1918ralbidv 2983 . . . . . . . . 9 (𝑥 = 𝑃 → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))
2019anbi2d 739 . . . . . . . 8 (𝑥 = 𝑃 → ((𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))) ↔ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))))
2116, 20anbi12d 746 . . . . . . 7 (𝑥 = 𝑃 → ((𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ (𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))))
22 eleq1 2687 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑡 ∈ (0[,)+∞) ↔ 𝑇 ∈ (0[,)+∞)))
23 oveq2 6643 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (1 − 𝑡) = (1 − 𝑇))
2423oveq1d 6650 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((1 − 𝑡) · (𝑍𝑖)) = ((1 − 𝑇) · (𝑍𝑖)))
25 oveq1 6642 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝑡 · (𝑈𝑖)) = (𝑇 · (𝑈𝑖)))
2624, 25oveq12d 6653 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))
2726eqeq2d 2630 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ (𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
2827ralbidv 2983 . . . . . . . . . 10 (𝑡 = 𝑇 → (∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
2922, 28anbi12d 746 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))) ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3029anbi2d 739 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
31 anass 680 . . . . . . . . . . 11 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞))))
32 anidm 675 . . . . . . . . . . . 12 ((𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞)) ↔ 𝑇 ∈ (0[,)+∞))
3332anbi2i 729 . . . . . . . . . . 11 ((𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞))) ↔ (𝑃𝐷𝑇 ∈ (0[,)+∞)))
3431, 33bitr2i 265 . . . . . . . . . 10 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)))
3534anbi1i 730 . . . . . . . . 9 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
36 anass 680 . . . . . . . . 9 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
37 anass 680 . . . . . . . . 9 ((((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3835, 36, 373bitr3i 290 . . . . . . . 8 ((𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3930, 38syl6bb 276 . . . . . . 7 (𝑡 = 𝑇 → ((𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
4021, 39, 2brabg 4984 . . . . . 6 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
4140bianabs 923 . . . . 5 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
42413adant1 1077 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
4315, 42bitrd 268 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
44433expia 1265 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → (𝑇 ∈ (0[,)+∞) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
458, 10, 44pm5.21ndd 369 1 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  {crab 2913  cop 4174   class class class wbr 4644  {copab 4703   Fn wfn 5871  wf 5872  1-1-ontowf1o 5875  cfv 5876  (class class class)co 6635  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  +∞cpnf 10056  cmin 10251  cn 11005  [,)cico 12162  ...cfz 12311  𝔼cee 25749   Btwn cbtwn 25750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-z 11363  df-uz 11673  df-ico 12166  df-icc 12167  df-fz 12312  df-ee 25752  df-btwn 25753
This theorem is referenced by:  axcontlem6  25830
  Copyright terms: Public domain W3C validator