MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem10 Structured version   Visualization version   GIF version

Theorem axcontlem10 26074
Description: Lemma for axcont 26077. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypotheses
Ref Expression
axcontlem10.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem10.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem10 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑝,𝑥   𝐵,𝑏,𝑝,𝑥,𝑦   𝐷,𝑝,𝑡,𝑥   𝐹,𝑏   𝑖,𝐹,𝑝,𝑡,𝑥   𝑦,𝐹   𝑁,𝑏   𝑖,𝑁,𝑝,𝑡,𝑥   𝑦,𝑁   𝑈,𝑏   𝑈,𝑖,𝑝,𝑡,𝑥   𝑦,𝑈   𝑍,𝑏   𝑖,𝑍,𝑝,𝑡,𝑥   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑦,𝑡,𝑖)   𝐵(𝑡,𝑖)   𝐷(𝑦,𝑖,𝑏)

Proof of Theorem axcontlem10
Dummy variables 𝑘 𝑚 𝑛 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5636 . . . . 5 (𝐹𝐴) ⊆ ran 𝐹
2 simpll 807 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑁 ∈ ℕ)
3 simprl1 1267 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍 ∈ (𝔼‘𝑁))
4 simplr1 1261 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ (𝔼‘𝑁))
5 simprl2 1269 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐴)
64, 5sseldd 3746 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈 ∈ (𝔼‘𝑁))
7 simprr 813 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑍𝑈)
8 axcontlem10.1 . . . . . . . 8 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
9 axcontlem10.2 . . . . . . . 8 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
108, 9axcontlem2 26066 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
112, 3, 6, 7, 10syl31anc 1480 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1-onto→(0[,)+∞))
12 f1ofo 6307 . . . . . 6 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷onto→(0[,)+∞))
13 forn 6281 . . . . . 6 (𝐹:𝐷onto→(0[,)+∞) → ran 𝐹 = (0[,)+∞))
1411, 12, 133syl 18 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ran 𝐹 = (0[,)+∞))
151, 14syl5sseq 3795 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ (0[,)+∞))
16 rge0ssre 12494 . . . 4 (0[,)+∞) ⊆ ℝ
1715, 16syl6ss 3757 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐴) ⊆ ℝ)
18 imassrn 5636 . . . . 5 (𝐹𝐵) ⊆ ran 𝐹
1918, 14syl5sseq 3795 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ (0[,)+∞))
2019, 16syl6ss 3757 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝐵) ⊆ ℝ)
218, 9axcontlem9 26073 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛)
22 dedekindle 10414 . . 3 (((𝐹𝐴) ⊆ ℝ ∧ (𝐹𝐵) ⊆ ℝ ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)𝑚𝑛) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
2317, 20, 21, 22syl3anc 1477 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
24 simpr 479 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ ℝ)
25 simprl3 1271 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ≠ ∅)
2625ad2antrr 764 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝐵 ≠ ∅)
27 n0 4075 . . . . . . . . . 10 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
2826, 27sylib 208 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → ∃𝑏 𝑏𝐵)
29 0red 10254 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ∈ ℝ)
30 f1of 6300 . . . . . . . . . . . . . . . 16 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷⟶(0[,)+∞))
3111, 30syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷⟶(0[,)+∞))
328axcontlem4 26068 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴𝐷)
3332, 5sseldd 3746 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝑈𝐷)
3431, 33ffvelrnd 6525 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (0[,)+∞))
3516, 34sseldi 3743 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ ℝ)
3635ad2antrr 764 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ ℝ)
37 simprl 811 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 𝑘 ∈ ℝ)
38 elrege0 12492 . . . . . . . . . . . . . . 15 ((𝐹𝑈) ∈ (0[,)+∞) ↔ ((𝐹𝑈) ∈ ℝ ∧ 0 ≤ (𝐹𝑈)))
3938simprbi 483 . . . . . . . . . . . . . 14 ((𝐹𝑈) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑈))
4034, 39syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 0 ≤ (𝐹𝑈))
4140ad2antrr 764 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ (𝐹𝑈))
42 f1of1 6299 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷1-1→(0[,)+∞))
4311, 42syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐹:𝐷1-1→(0[,)+∞))
44 f1elima 6685 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑈𝐷𝐴𝐷) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
4543, 33, 32, 44syl3anc 1477 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝐹𝑈) ∈ (𝐹𝐴) ↔ 𝑈𝐴))
465, 45mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝐹𝑈) ∈ (𝐹𝐴))
4746adantr 472 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ∈ (𝐹𝐴))
48 simpr 479 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐵)
4943adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐹:𝐷1-1→(0[,)+∞))
50 simpl1 1228 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍 ∈ (𝔼‘𝑁))
51 simpl2 1230 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑈𝐴)
52 simpr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → 𝑍𝑈)
5350, 51, 523jca 1123 . . . . . . . . . . . . . . . . . . . . 21 (((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈))
548axcontlem3 26067 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵𝐷)
5553, 54sylan2 492 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵𝐷)
5655sselda 3745 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝑏𝐷)
5755adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → 𝐵𝐷)
58 f1elima 6685 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐷1-1→(0[,)+∞) ∧ 𝑏𝐷𝐵𝐷) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
5949, 56, 57, 58syl3anc 1477 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → ((𝐹𝑏) ∈ (𝐹𝐵) ↔ 𝑏𝐵))
6048, 59mpbird 247 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ (𝐹𝐵))
6160adantrl 754 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑏) ∈ (𝐹𝐵))
6247, 61jca 555 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)))
63 breq1 4808 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝐹𝑈) → (𝑚𝑘 ↔ (𝐹𝑈) ≤ 𝑘))
6463anbi1d 743 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑈) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘𝑛)))
65 breq2 4809 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝐹𝑏) → (𝑘𝑛𝑘 ≤ (𝐹𝑏)))
6665anbi2d 742 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑏) → (((𝐹𝑈) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏))))
6764, 66rspc2va 3463 . . . . . . . . . . . . . . 15 ((((𝐹𝑈) ∈ (𝐹𝐴) ∧ (𝐹𝑏) ∈ (𝐹𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6862, 67sylan 489 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
6968an32s 881 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → ((𝐹𝑈) ≤ 𝑘𝑘 ≤ (𝐹𝑏)))
7069simpld 477 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → (𝐹𝑈) ≤ 𝑘)
7129, 36, 37, 41, 70letrd 10407 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ (𝑘 ∈ ℝ ∧ 𝑏𝐵)) → 0 ≤ 𝑘)
7271expr 644 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (𝑏𝐵 → 0 ≤ 𝑘))
7372exlimdv 2011 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → (∃𝑏 𝑏𝐵 → 0 ≤ 𝑘))
7428, 73mpd 15 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 0 ≤ 𝑘)
75 elrege0 12492 . . . . . . . 8 (𝑘 ∈ (0[,)+∞) ↔ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
7624, 74, 75sylanbrc 701 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ (0[,)+∞))
7776ex 449 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → 𝑘 ∈ (0[,)+∞)))
78 ssrab2 3829 . . . . . . . . . 10 {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)} ⊆ (𝔼‘𝑁)
798, 78eqsstri 3777 . . . . . . . . 9 𝐷 ⊆ (𝔼‘𝑁)
80 simpr 479 . . . . . . . . . 10 ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) → 𝑘 ∈ (0[,)+∞))
81 f1ocnvdm 6705 . . . . . . . . . 10 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹𝑘) ∈ 𝐷)
8211, 80, 81syl2an 495 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ 𝐷)
8379, 82sseldi 3743 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → (𝐹𝑘) ∈ (𝔼‘𝑁))
842, 3, 63jca 1123 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)))
8584, 7jca 555 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8685adantr 472 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈))
8732sselda 3745 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑞𝐴) → 𝑞𝐷)
8887adantrr 755 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑞𝐷)
8988adantrl 754 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑞𝐷)
90 simplr 809 . . . . . . . . . . . . . . 15 (((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑘 ∈ (0[,)+∞))
9111, 90, 81syl2an 495 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) ∈ 𝐷)
9255sselda 3745 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ 𝑟𝐵) → 𝑟𝐷)
9392adantrl 754 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → 𝑟𝐷)
9493adantrl 754 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → 𝑟𝐷)
9589, 91, 943jca 1123 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷))
9686, 95jca 555 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)))
97 f1ofun 6302 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐷1-1-onto→(0[,)+∞) → Fun 𝐹)
9811, 97syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → Fun 𝐹)
99 fdm 6213 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐷⟶(0[,)+∞) → dom 𝐹 = 𝐷)
10011, 30, 993syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → dom 𝐹 = 𝐷)
10132, 100sseqtr4d 3784 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴 ⊆ dom 𝐹)
102 funfvima2 6658 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10398, 101, 102syl2anc 696 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑞𝐴 → (𝐹𝑞) ∈ (𝐹𝐴)))
10455, 100sseqtr4d 3784 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐵 ⊆ dom 𝐹)
105 funfvima2 6658 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
10698, 104, 105syl2anc 696 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑟𝐵 → (𝐹𝑟) ∈ (𝐹𝐵)))
107103, 106anim12d 587 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ((𝑞𝐴𝑟𝐵) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵))))
108107imp 444 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (𝑞𝐴𝑟𝐵)) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
109108adantrl 754 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)))
110 simprll 821 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛))
111 breq1 4808 . . . . . . . . . . . . . . . 16 (𝑚 = (𝐹𝑞) → (𝑚𝑘 ↔ (𝐹𝑞) ≤ 𝑘))
112111anbi1d 743 . . . . . . . . . . . . . . 15 (𝑚 = (𝐹𝑞) → ((𝑚𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘𝑛)))
113 breq2 4809 . . . . . . . . . . . . . . . 16 (𝑛 = (𝐹𝑟) → (𝑘𝑛𝑘 ≤ (𝐹𝑟)))
114113anbi2d 742 . . . . . . . . . . . . . . 15 (𝑛 = (𝐹𝑟) → (((𝐹𝑞) ≤ 𝑘𝑘𝑛) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
115112, 114rspc2v 3462 . . . . . . . . . . . . . 14 (((𝐹𝑞) ∈ (𝐹𝐴) ∧ (𝐹𝑟) ∈ (𝐹𝐵)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
116109, 110, 115sylc 65 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟)))
117 f1ocnvfv2 6698 . . . . . . . . . . . . . . . 16 ((𝐹:𝐷1-1-onto→(0[,)+∞) ∧ 𝑘 ∈ (0[,)+∞)) → (𝐹‘(𝐹𝑘)) = 𝑘)
11811, 90, 117syl2an 495 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹‘(𝐹𝑘)) = 𝑘)
119118breq2d 4817 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ↔ (𝐹𝑞) ≤ 𝑘))
120118breq1d 4815 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟) ↔ 𝑘 ≤ (𝐹𝑟)))
121119, 120anbi12d 749 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) ↔ ((𝐹𝑞) ≤ 𝑘𝑘 ≤ (𝐹𝑟))))
122116, 121mpbird 247 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → ((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)))
1238, 9axcontlem8 26072 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑞𝐷 ∧ (𝐹𝑘) ∈ 𝐷𝑟𝐷)) → (((𝐹𝑞) ≤ (𝐹‘(𝐹𝑘)) ∧ (𝐹‘(𝐹𝑘)) ≤ (𝐹𝑟)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩))
12496, 122, 123sylc 65 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ((∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞)) ∧ (𝑞𝐴𝑟𝐵))) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
125124anassrs 683 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) ∧ (𝑞𝐴𝑟𝐵)) → (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
126125ralrimivva 3110 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩)
127 opeq1 4554 . . . . . . . . . . 11 (𝑞 = 𝑥 → ⟨𝑞, 𝑟⟩ = ⟨𝑥, 𝑟⟩)
128127breq2d 4817 . . . . . . . . . 10 (𝑞 = 𝑥 → ((𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩))
129 opeq2 4555 . . . . . . . . . . 11 (𝑟 = 𝑦 → ⟨𝑥, 𝑟⟩ = ⟨𝑥, 𝑦⟩)
130129breq2d 4817 . . . . . . . . . 10 (𝑟 = 𝑦 → ((𝐹𝑘) Btwn ⟨𝑥, 𝑟⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
131128, 130cbvral2v 3319 . . . . . . . . 9 (∀𝑞𝐴𝑟𝐵 (𝐹𝑘) Btwn ⟨𝑞, 𝑟⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
132126, 131sylib 208 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩)
133 breq1 4808 . . . . . . . . . 10 (𝑏 = (𝐹𝑘) → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
1341332ralbidv 3128 . . . . . . . . 9 (𝑏 = (𝐹𝑘) → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩))
135134rspcev 3450 . . . . . . . 8 (((𝐹𝑘) ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 (𝐹𝑘) Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
13683, 132, 135syl2anc 696 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) ∧ 𝑘 ∈ (0[,)+∞))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
137136expr 644 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ (0[,)+∞) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
13877, 137syld 47 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) ∧ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛)) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
139138ex 449 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → (𝑘 ∈ ℝ → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
140139com23 86 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (𝑘 ∈ ℝ → (∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)))
141140rexlimdv 3169 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → (∃𝑘 ∈ ℝ ∀𝑚 ∈ (𝐹𝐴)∀𝑛 ∈ (𝐹𝐵)(𝑚𝑘𝑘𝑛) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
14223, 141mpd 15 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2140  wne 2933  wral 3051  wrex 3052  {crab 3055  wss 3716  c0 4059  cop 4328   class class class wbr 4805  {copab 4865  ccnv 5266  dom cdm 5267  ran crn 5268  cima 5270  Fun wfun 6044  wf 6046  1-1wf1 6047  ontowfo 6048  1-1-ontowf1o 6049  cfv 6050  (class class class)co 6815  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  +∞cpnf 10284  cle 10288  cmin 10479  cn 11233  [,)cico 12391  ...cfz 12540  𝔼cee 25989   Btwn cbtwn 25990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-z 11591  df-uz 11901  df-ico 12395  df-icc 12396  df-fz 12541  df-ee 25992  df-btwn 25993
This theorem is referenced by:  axcontlem11  26075
  Copyright terms: Public domain W3C validator