Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4 Structured version   Visualization version   GIF version

Theorem axcc4 9299
 Description: A version of axcc3 9298 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.)
Hypotheses
Ref Expression
axcc4.1 𝐴 ∈ V
axcc4.2 𝑁 ≈ ω
axcc4.3 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
Assertion
Ref Expression
axcc4 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜑,𝑓   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝜓(𝑓,𝑛)   𝑁(𝑥)

Proof of Theorem axcc4
StepHypRef Expression
1 axcc4.1 . . . 4 𝐴 ∈ V
21rabex 4845 . . 3 {𝑥𝐴𝜑} ∈ V
3 axcc4.2 . . 3 𝑁 ≈ ω
42, 3axcc3 9298 . 2 𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
5 rabn0 3991 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
6 pm2.27 42 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
75, 6sylbir 225 . . . . . . . . 9 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
8 axcc4.3 . . . . . . . . . 10 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
98elrab 3396 . . . . . . . . 9 ((𝑓𝑛) ∈ {𝑥𝐴𝜑} ↔ ((𝑓𝑛) ∈ 𝐴𝜓))
107, 9syl6ib 241 . . . . . . . 8 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ((𝑓𝑛) ∈ 𝐴𝜓)))
1110ral2imi 2976 . . . . . . 7 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓)))
12 simpl 472 . . . . . . . 8 (((𝑓𝑛) ∈ 𝐴𝜓) → (𝑓𝑛) ∈ 𝐴)
1312ralimi 2981 . . . . . . 7 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)
1411, 13syl6 35 . . . . . 6 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1514anim2d 588 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)))
16 ffnfv 6428 . . . . 5 (𝑓:𝑁𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1715, 16syl6ibr 242 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → 𝑓:𝑁𝐴))
18 simpr 476 . . . . . . 7 (((𝑓𝑛) ∈ 𝐴𝜓) → 𝜓)
1918ralimi 2981 . . . . . 6 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 𝜓)
2011, 19syl6 35 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 𝜓))
2120adantld 482 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∀𝑛𝑁 𝜓))
2217, 21jcad 554 . . 3 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
2322eximdv 1886 . 2 (∀𝑛𝑁𝑥𝐴 𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
244, 23mpi 20 1 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  ∃wex 1744   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {crab 2945  Vcvv 3231  ∅c0 3948   class class class wbr 4685   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  ωcom 7107   ≈ cen 7994 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-2nd 7211  df-er 7787  df-en 7998 This theorem is referenced by:  axcc4dom  9301  supcvg  14632  1stcelcls  21312  iscmet3  23137  ovoliunlem3  23318  itg2seq  23554  nmounbseqi  27760  nmobndseqi  27762  minvecolem5  27865  heibor  33750
 Copyright terms: Public domain W3C validator