MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc3 Structured version   Visualization version   GIF version

Theorem axcc3 9298
Description: A possibly more useful version of ax-cc 9295 using sequences 𝐹(𝑛) instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
axcc3.1 𝐹 ∈ V
axcc3.2 𝑁 ≈ ω
Assertion
Ref Expression
axcc3 𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹))
Distinct variable groups:   𝑓,𝐹   𝑓,𝑁,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem axcc3
Dummy variables 𝑔 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axcc3.2 . . 3 𝑁 ≈ ω
2 relen 8002 . . . 4 Rel ≈
32brrelexi 5192 . . 3 (𝑁 ≈ ω → 𝑁 ∈ V)
4 mptexg 6525 . . 3 (𝑁 ∈ V → (𝑛𝑁𝐹) ∈ V)
51, 3, 4mp2b 10 . 2 (𝑛𝑁𝐹) ∈ V
6 bren 8006 . . . 4 (𝑁 ≈ ω ↔ ∃ :𝑁1-1-onto→ω)
71, 6mpbi 220 . . 3 :𝑁1-1-onto→ω
8 axcc2 9297 . . . . 5 𝑔(𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)))
9 f1of 6175 . . . . . . . . . . 11 (:𝑁1-1-onto→ω → :𝑁⟶ω)
10 fnfco 6107 . . . . . . . . . . 11 ((𝑔 Fn ω ∧ :𝑁⟶ω) → (𝑔) Fn 𝑁)
119, 10sylan2 490 . . . . . . . . . 10 ((𝑔 Fn ω ∧ :𝑁1-1-onto→ω) → (𝑔) Fn 𝑁)
1211adantlr 751 . . . . . . . . 9 (((𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚))) ∧ :𝑁1-1-onto→ω) → (𝑔) Fn 𝑁)
13123adant1 1099 . . . . . . . 8 ((𝑘 = (𝑛𝑁𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚))) ∧ :𝑁1-1-onto→ω) → (𝑔) Fn 𝑁)
14 nfmpt1 4780 . . . . . . . . . . 11 𝑛(𝑛𝑁𝐹)
1514nfeq2 2809 . . . . . . . . . 10 𝑛 𝑘 = (𝑛𝑁𝐹)
16 nfv 1883 . . . . . . . . . 10 𝑛(𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)))
17 nfv 1883 . . . . . . . . . 10 𝑛 :𝑁1-1-onto→ω
1815, 16, 17nf3an 1871 . . . . . . . . 9 𝑛(𝑘 = (𝑛𝑁𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚))) ∧ :𝑁1-1-onto→ω)
199ffvelrnda 6399 . . . . . . . . . . . . . . . . . 18 ((:𝑁1-1-onto→ω ∧ 𝑛𝑁) → (𝑛) ∈ ω)
20 fveq2 6229 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = (𝑛) → ((𝑘)‘𝑚) = ((𝑘)‘(𝑛)))
2120neeq1d 2882 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = (𝑛) → (((𝑘)‘𝑚) ≠ ∅ ↔ ((𝑘)‘(𝑛)) ≠ ∅))
22 fveq2 6229 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = (𝑛) → (𝑔𝑚) = (𝑔‘(𝑛)))
2322, 20eleq12d 2724 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = (𝑛) → ((𝑔𝑚) ∈ ((𝑘)‘𝑚) ↔ (𝑔‘(𝑛)) ∈ ((𝑘)‘(𝑛))))
2421, 23imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑚 = (𝑛) → ((((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)) ↔ (((𝑘)‘(𝑛)) ≠ ∅ → (𝑔‘(𝑛)) ∈ ((𝑘)‘(𝑛)))))
2524rspcv 3336 . . . . . . . . . . . . . . . . . 18 ((𝑛) ∈ ω → (∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)) → (((𝑘)‘(𝑛)) ≠ ∅ → (𝑔‘(𝑛)) ∈ ((𝑘)‘(𝑛)))))
2619, 25syl 17 . . . . . . . . . . . . . . . . 17 ((:𝑁1-1-onto→ω ∧ 𝑛𝑁) → (∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)) → (((𝑘)‘(𝑛)) ≠ ∅ → (𝑔‘(𝑛)) ∈ ((𝑘)‘(𝑛)))))
27263ad2antl3 1245 . . . . . . . . . . . . . . . 16 (((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → (∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)) → (((𝑘)‘(𝑛)) ≠ ∅ → (𝑔‘(𝑛)) ∈ ((𝑘)‘(𝑛)))))
28 f1ocnv 6187 . . . . . . . . . . . . . . . . . . . . . . . . 25 (:𝑁1-1-onto→ω → :ω–1-1-onto𝑁)
29 f1of 6175 . . . . . . . . . . . . . . . . . . . . . . . . 25 (:ω–1-1-onto𝑁:ω⟶𝑁)
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (:𝑁1-1-onto→ω → :ω⟶𝑁)
31 fvco3 6314 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:ω⟶𝑁 ∧ (𝑛) ∈ ω) → ((𝑘)‘(𝑛)) = (𝑘‘(‘(𝑛))))
3230, 31sylan 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((:𝑁1-1-onto→ω ∧ (𝑛) ∈ ω) → ((𝑘)‘(𝑛)) = (𝑘‘(‘(𝑛))))
3319, 32syldan 486 . . . . . . . . . . . . . . . . . . . . . 22 ((:𝑁1-1-onto→ω ∧ 𝑛𝑁) → ((𝑘)‘(𝑛)) = (𝑘‘(‘(𝑛))))
34333adant1 1099 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 = (𝑛𝑁𝐹) ∧ :𝑁1-1-onto→ω ∧ 𝑛𝑁) → ((𝑘)‘(𝑛)) = (𝑘‘(‘(𝑛))))
35 f1ocnvfv1 6572 . . . . . . . . . . . . . . . . . . . . . . 23 ((:𝑁1-1-onto→ω ∧ 𝑛𝑁) → (‘(𝑛)) = 𝑛)
3635fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . 22 ((:𝑁1-1-onto→ω ∧ 𝑛𝑁) → (𝑘‘(‘(𝑛))) = (𝑘𝑛))
37363adant1 1099 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 = (𝑛𝑁𝐹) ∧ :𝑁1-1-onto→ω ∧ 𝑛𝑁) → (𝑘‘(‘(𝑛))) = (𝑘𝑛))
38 fveq1 6228 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑛𝑁𝐹) → (𝑘𝑛) = ((𝑛𝑁𝐹)‘𝑛))
39 axcc3.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐹 ∈ V
40 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛𝑁𝐹) = (𝑛𝑁𝐹)
4140fvmpt2 6330 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛𝑁𝐹 ∈ V) → ((𝑛𝑁𝐹)‘𝑛) = 𝐹)
4239, 41mpan2 707 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛𝑁 → ((𝑛𝑁𝐹)‘𝑛) = 𝐹)
4338, 42sylan9eq 2705 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 = (𝑛𝑁𝐹) ∧ 𝑛𝑁) → (𝑘𝑛) = 𝐹)
44433adant2 1100 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 = (𝑛𝑁𝐹) ∧ :𝑁1-1-onto→ω ∧ 𝑛𝑁) → (𝑘𝑛) = 𝐹)
4534, 37, 443eqtrd 2689 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 = (𝑛𝑁𝐹) ∧ :𝑁1-1-onto→ω ∧ 𝑛𝑁) → ((𝑘)‘(𝑛)) = 𝐹)
46453expa 1284 . . . . . . . . . . . . . . . . . . 19 (((𝑘 = (𝑛𝑁𝐹) ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → ((𝑘)‘(𝑛)) = 𝐹)
47463adantl2 1238 . . . . . . . . . . . . . . . . . 18 (((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → ((𝑘)‘(𝑛)) = 𝐹)
4847neeq1d 2882 . . . . . . . . . . . . . . . . 17 (((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → (((𝑘)‘(𝑛)) ≠ ∅ ↔ 𝐹 ≠ ∅))
4993ad2ant3 1104 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) → :𝑁⟶ω)
50 fvco3 6314 . . . . . . . . . . . . . . . . . . . 20 ((:𝑁⟶ω ∧ 𝑛𝑁) → ((𝑔)‘𝑛) = (𝑔‘(𝑛)))
5149, 50sylan 487 . . . . . . . . . . . . . . . . . . 19 (((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → ((𝑔)‘𝑛) = (𝑔‘(𝑛)))
5251eleq1d 2715 . . . . . . . . . . . . . . . . . 18 (((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → (((𝑔)‘𝑛) ∈ ((𝑘)‘(𝑛)) ↔ (𝑔‘(𝑛)) ∈ ((𝑘)‘(𝑛))))
5347eleq2d 2716 . . . . . . . . . . . . . . . . . 18 (((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → (((𝑔)‘𝑛) ∈ ((𝑘)‘(𝑛)) ↔ ((𝑔)‘𝑛) ∈ 𝐹))
5452, 53bitr3d 270 . . . . . . . . . . . . . . . . 17 (((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → ((𝑔‘(𝑛)) ∈ ((𝑘)‘(𝑛)) ↔ ((𝑔)‘𝑛) ∈ 𝐹))
5548, 54imbi12d 333 . . . . . . . . . . . . . . . 16 (((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → ((((𝑘)‘(𝑛)) ≠ ∅ → (𝑔‘(𝑛)) ∈ ((𝑘)‘(𝑛))) ↔ (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹)))
5627, 55sylibd 229 . . . . . . . . . . . . . . 15 (((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) ∧ 𝑛𝑁) → (∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)) → (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹)))
5756ex 449 . . . . . . . . . . . . . 14 ((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) → (𝑛𝑁 → (∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)) → (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹))))
5857com23 86 . . . . . . . . . . . . 13 ((𝑘 = (𝑛𝑁𝐹) ∧ 𝑔 Fn ω ∧ :𝑁1-1-onto→ω) → (∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)) → (𝑛𝑁 → (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹))))
59583exp 1283 . . . . . . . . . . . 12 (𝑘 = (𝑛𝑁𝐹) → (𝑔 Fn ω → (:𝑁1-1-onto→ω → (∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)) → (𝑛𝑁 → (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹))))))
6059com34 91 . . . . . . . . . . 11 (𝑘 = (𝑛𝑁𝐹) → (𝑔 Fn ω → (∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)) → (:𝑁1-1-onto→ω → (𝑛𝑁 → (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹))))))
6160imp32 448 . . . . . . . . . 10 ((𝑘 = (𝑛𝑁𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚)))) → (:𝑁1-1-onto→ω → (𝑛𝑁 → (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹))))
62613impia 1280 . . . . . . . . 9 ((𝑘 = (𝑛𝑁𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚))) ∧ :𝑁1-1-onto→ω) → (𝑛𝑁 → (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹)))
6318, 62ralrimi 2986 . . . . . . . 8 ((𝑘 = (𝑛𝑁𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚))) ∧ :𝑁1-1-onto→ω) → ∀𝑛𝑁 (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹))
64 vex 3234 . . . . . . . . . 10 𝑔 ∈ V
65 vex 3234 . . . . . . . . . 10 ∈ V
6664, 65coex 7160 . . . . . . . . 9 (𝑔) ∈ V
67 fneq1 6017 . . . . . . . . . 10 (𝑓 = (𝑔) → (𝑓 Fn 𝑁 ↔ (𝑔) Fn 𝑁))
68 fveq1 6228 . . . . . . . . . . . . 13 (𝑓 = (𝑔) → (𝑓𝑛) = ((𝑔)‘𝑛))
6968eleq1d 2715 . . . . . . . . . . . 12 (𝑓 = (𝑔) → ((𝑓𝑛) ∈ 𝐹 ↔ ((𝑔)‘𝑛) ∈ 𝐹))
7069imbi2d 329 . . . . . . . . . . 11 (𝑓 = (𝑔) → ((𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹) ↔ (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹)))
7170ralbidv 3015 . . . . . . . . . 10 (𝑓 = (𝑔) → (∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹) ↔ ∀𝑛𝑁 (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹)))
7267, 71anbi12d 747 . . . . . . . . 9 (𝑓 = (𝑔) → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹)) ↔ ((𝑔) Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹))))
7366, 72spcev 3331 . . . . . . . 8 (((𝑔) Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → ((𝑔)‘𝑛) ∈ 𝐹)) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹)))
7413, 63, 73syl2anc 694 . . . . . . 7 ((𝑘 = (𝑛𝑁𝐹) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚))) ∧ :𝑁1-1-onto→ω) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹)))
75743exp 1283 . . . . . 6 (𝑘 = (𝑛𝑁𝐹) → ((𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚))) → (:𝑁1-1-onto→ω → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹)))))
7675exlimdv 1901 . . . . 5 (𝑘 = (𝑛𝑁𝐹) → (∃𝑔(𝑔 Fn ω ∧ ∀𝑚 ∈ ω (((𝑘)‘𝑚) ≠ ∅ → (𝑔𝑚) ∈ ((𝑘)‘𝑚))) → (:𝑁1-1-onto→ω → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹)))))
778, 76mpi 20 . . . 4 (𝑘 = (𝑛𝑁𝐹) → (:𝑁1-1-onto→ω → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹))))
7877exlimdv 1901 . . 3 (𝑘 = (𝑛𝑁𝐹) → (∃ :𝑁1-1-onto→ω → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹))))
797, 78mpi 20 . 2 (𝑘 = (𝑛𝑁𝐹) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹)))
805, 79vtocle 3313 1 𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝐹 ≠ ∅ → (𝑓𝑛) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  Vcvv 3231  c0 3948   class class class wbr 4685  cmpt 4762  ccnv 5142  ccom 5147   Fn wfn 5921  wf 5922  1-1-ontowf1o 5925  cfv 5926  ωcom 7107  cen 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-2nd 7211  df-er 7787  df-en 7998
This theorem is referenced by:  axcc4  9299  domtriomlem  9302  ovnsubaddlem2  41106
  Copyright terms: Public domain W3C validator