Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5 Structured version   Visualization version   GIF version

Theorem axc5 33655
Description: This theorem repeats sp 2051 under the name axc5 33655, so that the metamath program's "verify markup" command will check that it matches axiom scheme ax-c5 33645. It is preferred that references to this theorem use the name sp 2051. (Contributed by NM, 18-Aug-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
axc5 (∀𝑥𝜑𝜑)

Proof of Theorem axc5
StepHypRef Expression
1 sp 2051 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-12 2044
This theorem depends on definitions:  df-bi 197  df-ex 1702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator