Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5 Structured version   Visualization version   GIF version

Theorem axc5 32698
Description: This theorem repeats sp 1990 under the name axc5 32698, so that the metamath program's "verify markup" command will check that it matches axiom scheme ax-c5 32688. It is preferred that references to this theorem use the name sp 1990. (Contributed by NM, 18-Aug-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
axc5 (∀𝑥𝜑𝜑)

Proof of Theorem axc5
StepHypRef Expression
1 sp 1990 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-12 1983
This theorem depends on definitions:  df-bi 192  df-ex 1693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator