![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc16nfALT | Structured version Visualization version GIF version |
Description: Alternate proof of axc16nf 2175, shorter but requiring ax-11 2074 and ax-13 2282. (Contributed by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc16nfALT | ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2349 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
2 | axc16g 2172 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | |
3 | 1, 2 | nf5d 2156 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |