Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc16g-o Structured version   Visualization version   GIF version

Theorem axc16g-o 34538
Description: A generalization of axiom ax-c16 34496. Version of axc16g 2172 using ax-c11 34491. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc16g-o (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem axc16g-o
StepHypRef Expression
1 aev-o 34535 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑥)
2 ax-c16 34496 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
3 biidd 252 . . . 4 (∀𝑧 𝑧 = 𝑥 → (𝜑𝜑))
43dral1-o 34508 . . 3 (∀𝑧 𝑧 = 𝑥 → (∀𝑧𝜑 ↔ ∀𝑥𝜑))
54biimprd 238 . 2 (∀𝑧 𝑧 = 𝑥 → (∀𝑥𝜑 → ∀𝑧𝜑))
61, 2, 5sylsyld 61 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-11 2074  ax-12 2087  ax-13 2282  ax-c5 34487  ax-c4 34488  ax-c7 34489  ax-c10 34490  ax-c11 34491  ax-c9 34494  ax-c16 34496
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745
This theorem is referenced by:  ax12inda2  34551
  Copyright terms: Public domain W3C validator