![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc16b | Structured version Visualization version GIF version |
Description: This theorem shows that axiom ax-c16 34681 is redundant in the presence of theorem dtru 5006, which states simply that at least two things exist. This justifies the remark at mmzfcnd.html#twoness (which links to this theorem). (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 7-Nov-2006.) |
Ref | Expression |
---|---|
axc16b | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtru 5006 | . 2 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | 1 | pm2.21i 116 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-nul 4941 ax-pow 4992 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |