 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc15OLD Structured version   Visualization version   GIF version

Theorem axc15OLD 2342
 Description: Obsolete proof of axc15 2301 as of 24-Mar-2021. (Contributed by NM, 3-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc15OLD (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))

Proof of Theorem axc15OLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-12 2045 . 2 (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
21ax12a2OLD 2341 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1479 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-12 2045  ax-13 2244 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1703  df-nf 1708 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator