 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11rvOLD Structured version   Visualization version   GIF version

Theorem axc11rvOLD 2279
 Description: Obsolete proof of axc11rv 2278 as of 11-Oct-2021. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc11rvOLD (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem axc11rvOLD
StepHypRef Expression
1 ax12v2 2190 . . . 4 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
21sps 2194 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
3 pm2.27 42 . . . 4 (𝑥 = 𝑦 → ((𝑥 = 𝑦𝜑) → 𝜑))
43al2imi 1884 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥𝜑))
52, 4syld 47 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
65spsd 2196 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1622 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-12 2188 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1846 This theorem is referenced by:  axc16gOLD  2299
 Copyright terms: Public domain W3C validator