Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc11next Structured version   Visualization version   GIF version

Theorem axc11next 38427
Description: This theorem shows that, given axext4 2604, we can derive a version of axc11n 2305. However, it is weaker than axc11n 2305 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc11next (∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥)
Distinct variable group:   𝑥,𝑧

Proof of Theorem axc11next
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-ext 2600 . . . . . 6 (∀𝑤(𝑤𝑥𝑤𝑧) → 𝑥 = 𝑧)
21alimi 1737 . . . . 5 (∀𝑥𝑤(𝑤𝑥𝑤𝑧) → ∀𝑥 𝑥 = 𝑧)
3 ax-11 2032 . . . . . . 7 (∀𝑥𝑤(𝑤𝑥𝑤𝑧) → ∀𝑤𝑥(𝑤𝑥𝑤𝑧))
4 ax9 2001 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑤𝑥𝑤𝑧))
5 biimpr 210 . . . . . . . . . . 11 ((𝑤𝑥𝑤𝑧) → (𝑤𝑧𝑤𝑥))
65alimi 1737 . . . . . . . . . 10 (∀𝑥(𝑤𝑥𝑤𝑧) → ∀𝑥(𝑤𝑧𝑤𝑥))
7 stdpc5v 1865 . . . . . . . . . 10 (∀𝑥(𝑤𝑧𝑤𝑥) → (𝑤𝑧 → ∀𝑥 𝑤𝑥))
86, 7syl 17 . . . . . . . . 9 (∀𝑥(𝑤𝑥𝑤𝑧) → (𝑤𝑧 → ∀𝑥 𝑤𝑥))
94, 8syl9 77 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑥(𝑤𝑥𝑤𝑧) → (𝑤𝑥 → ∀𝑥 𝑤𝑥)))
109alimdv 1843 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑤𝑥(𝑤𝑥𝑤𝑧) → ∀𝑤(𝑤𝑥 → ∀𝑥 𝑤𝑥)))
113, 10syl5 34 . . . . . 6 (𝑥 = 𝑧 → (∀𝑥𝑤(𝑤𝑥𝑤𝑧) → ∀𝑤(𝑤𝑥 → ∀𝑥 𝑤𝑥)))
1211sps 2053 . . . . 5 (∀𝑥 𝑥 = 𝑧 → (∀𝑥𝑤(𝑤𝑥𝑤𝑧) → ∀𝑤(𝑤𝑥 → ∀𝑥 𝑤𝑥)))
132, 12mpcom 38 . . . 4 (∀𝑥𝑤(𝑤𝑥𝑤𝑧) → ∀𝑤(𝑤𝑥 → ∀𝑥 𝑤𝑥))
1413axc4i 2129 . . 3 (∀𝑥𝑤(𝑤𝑥𝑤𝑧) → ∀𝑥𝑤(𝑤𝑥 → ∀𝑥 𝑤𝑥))
15 nfa1 2026 . . . . . . . 8 𝑥𝑥 𝑤𝑥
161519.23 2078 . . . . . . 7 (∀𝑥(𝑤𝑥 → ∀𝑥 𝑤𝑥) ↔ (∃𝑥 𝑤𝑥 → ∀𝑥 𝑤𝑥))
17 19.8a 2050 . . . . . . . . 9 (𝑤𝑧 → ∃𝑧 𝑤𝑧)
18 elequ2 2002 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑤𝑧𝑤𝑥))
1918cbvexv 2273 . . . . . . . . 9 (∃𝑧 𝑤𝑧 ↔ ∃𝑥 𝑤𝑥)
2017, 19sylib 208 . . . . . . . 8 (𝑤𝑧 → ∃𝑥 𝑤𝑥)
214cbvalivw 1932 . . . . . . . 8 (∀𝑥 𝑤𝑥 → ∀𝑧 𝑤𝑧)
2220, 21imim12i 62 . . . . . . 7 ((∃𝑥 𝑤𝑥 → ∀𝑥 𝑤𝑥) → (𝑤𝑧 → ∀𝑧 𝑤𝑧))
2316, 22sylbi 207 . . . . . 6 (∀𝑥(𝑤𝑥 → ∀𝑥 𝑤𝑥) → (𝑤𝑧 → ∀𝑧 𝑤𝑧))
2423alimi 1737 . . . . 5 (∀𝑤𝑥(𝑤𝑥 → ∀𝑥 𝑤𝑥) → ∀𝑤(𝑤𝑧 → ∀𝑧 𝑤𝑧))
2524alcoms 2033 . . . 4 (∀𝑥𝑤(𝑤𝑥 → ∀𝑥 𝑤𝑥) → ∀𝑤(𝑤𝑧 → ∀𝑧 𝑤𝑧))
2625alrimiv 1853 . . 3 (∀𝑥𝑤(𝑤𝑥 → ∀𝑥 𝑤𝑥) → ∀𝑧𝑤(𝑤𝑧 → ∀𝑧 𝑤𝑧))
27 nfa1 2026 . . . . . . . 8 𝑧𝑧 𝑤𝑧
282719.23 2078 . . . . . . 7 (∀𝑧(𝑤𝑧 → ∀𝑧 𝑤𝑧) ↔ (∃𝑧 𝑤𝑧 → ∀𝑧 𝑤𝑧))
29 ax9 2001 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑤𝑧𝑤𝑥))
3029spimv 2255 . . . . . . . . 9 (∀𝑧 𝑤𝑧𝑤𝑥)
3117, 30imim12i 62 . . . . . . . 8 ((∃𝑧 𝑤𝑧 → ∀𝑧 𝑤𝑧) → (𝑤𝑧𝑤𝑥))
32 19.8a 2050 . . . . . . . . . 10 (𝑤𝑥 → ∃𝑥 𝑤𝑥)
33 elequ2 2002 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑤𝑥𝑤𝑧))
3433cbvexv 2273 . . . . . . . . . 10 (∃𝑥 𝑤𝑥 ↔ ∃𝑧 𝑤𝑧)
3532, 34sylib 208 . . . . . . . . 9 (𝑤𝑥 → ∃𝑧 𝑤𝑧)
36 sp 2051 . . . . . . . . 9 (∀𝑧 𝑤𝑧𝑤𝑧)
3735, 36imim12i 62 . . . . . . . 8 ((∃𝑧 𝑤𝑧 → ∀𝑧 𝑤𝑧) → (𝑤𝑥𝑤𝑧))
3831, 37impbid 202 . . . . . . 7 ((∃𝑧 𝑤𝑧 → ∀𝑧 𝑤𝑧) → (𝑤𝑧𝑤𝑥))
3928, 38sylbi 207 . . . . . 6 (∀𝑧(𝑤𝑧 → ∀𝑧 𝑤𝑧) → (𝑤𝑧𝑤𝑥))
4039alimi 1737 . . . . 5 (∀𝑤𝑧(𝑤𝑧 → ∀𝑧 𝑤𝑧) → ∀𝑤(𝑤𝑧𝑤𝑥))
4140alcoms 2033 . . . 4 (∀𝑧𝑤(𝑤𝑧 → ∀𝑧 𝑤𝑧) → ∀𝑤(𝑤𝑧𝑤𝑥))
4241axc4i 2129 . . 3 (∀𝑧𝑤(𝑤𝑧 → ∀𝑧 𝑤𝑧) → ∀𝑧𝑤(𝑤𝑧𝑤𝑥))
4314, 26, 423syl 18 . 2 (∀𝑥𝑤(𝑤𝑥𝑤𝑧) → ∀𝑧𝑤(𝑤𝑧𝑤𝑥))
44 axext4 2604 . . 3 (𝑥 = 𝑧 ↔ ∀𝑤(𝑤𝑥𝑤𝑧))
4544albii 1745 . 2 (∀𝑥 𝑥 = 𝑧 ↔ ∀𝑥𝑤(𝑤𝑥𝑤𝑧))
46 axext4 2604 . . 3 (𝑧 = 𝑥 ↔ ∀𝑤(𝑤𝑧𝑤𝑥))
4746albii 1745 . 2 (∀𝑧 𝑧 = 𝑥 ↔ ∀𝑧𝑤(𝑤𝑧𝑤𝑥))
4843, 45, 473imtr4i 281 1 (∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1479   = wceq 1481  wex 1702  wcel 1988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1703  df-nf 1708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator