Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11nOLDOLD Structured version   Visualization version   GIF version

Theorem axc11nOLDOLD 2307
 Description: Old proof of axc11n 2305. Obsolete as of 29-Mar-2021. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) Adapt to a modification of axc11nlemOLD2 1986. (Revised by Wolf Lammen, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc11nOLDOLD (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem axc11nOLDOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equcomi 1942 . . . . 5 (𝑧 = 𝑥𝑥 = 𝑧)
2 dveeq1 2298 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
31, 2syl5com 31 . . . 4 (𝑧 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑧))
4 axc11r 2185 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧))
52axc11nlemOLD2 1986 . . . . 5 (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)
64, 5syl6 35 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥))
73, 6syl9 77 . . 3 (𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥)))
8 ax6ev 1888 . . 3 𝑧 𝑧 = 𝑥
97, 8exlimiiv 1857 . 2 (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))
109pm2.18d 124 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1479 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-12 2045  ax-13 2244 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1703  df-nf 1708 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator