MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axbtwnid Structured version   Visualization version   GIF version

Theorem axbtwnid 26039
Description: Points are indivisible. That is, if 𝐴 lies between 𝐵 and 𝐵, then 𝐴 = 𝐵. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axbtwnid ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐵⟩ → 𝐴 = 𝐵))

Proof of Theorem axbtwnid
Dummy variables 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1132 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2 simp3 1133 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
3 brbtwn 25999 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐵⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
41, 2, 2, 3syl3anc 1477 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐵⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
5 0re 10252 . . . . . . 7 0 ∈ ℝ
6 1re 10251 . . . . . . 7 1 ∈ ℝ
75, 6elicc2i 12452 . . . . . 6 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
87simp1bi 1140 . . . . 5 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
98recnd 10280 . . . 4 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
10 eqeefv 26003 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
11103adant1 1125 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
1211adantr 472 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
13 ax-1cn 10206 . . . . . . . . . . . 12 1 ∈ ℂ
14 npcan 10502 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) + 𝑡) = 1)
1513, 14mpan 708 . . . . . . . . . . 11 (𝑡 ∈ ℂ → ((1 − 𝑡) + 𝑡) = 1)
1615ad2antlr 765 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) + 𝑡) = 1)
1716oveq1d 6829 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) + 𝑡) · (𝐵𝑖)) = (1 · (𝐵𝑖)))
18 subcl 10492 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
1913, 18mpan 708 . . . . . . . . . . 11 (𝑡 ∈ ℂ → (1 − 𝑡) ∈ ℂ)
2019ad2antlr 765 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ)
21 simplr 809 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
22 simpll3 1259 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
23 fveecn 26002 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
2422, 23sylancom 704 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
2520, 21, 24adddird 10277 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) + 𝑡) · (𝐵𝑖)) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))))
2624mulid2d 10270 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (1 · (𝐵𝑖)) = (𝐵𝑖))
2717, 25, 263eqtr3rd 2803 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))))
2827eqeq2d 2770 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) = (𝐵𝑖) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
2928ralbidva 3123 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
3012, 29bitrd 268 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
3130biimprd 238 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))) → 𝐴 = 𝐵))
329, 31sylan2 492 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))) → 𝐴 = 𝐵))
3332rexlimdva 3169 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))) → 𝐴 = 𝐵))
344, 33sylbid 230 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐵⟩ → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cop 4327   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  cle 10287  cmin 10478  cn 11232  [,]cicc 12391  ...cfz 12539  𝔼cee 25988   Btwn cbtwn 25989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-z 11590  df-uz 11900  df-icc 12395  df-fz 12540  df-ee 25991  df-btwn 25992
This theorem is referenced by:  eengtrkg  26085  btwncomim  32447  btwnswapid  32451  btwnintr  32453  btwnexch3  32454  ifscgr  32478  idinside  32518  btwnconn1lem12  32532  outsideofrflx  32561
  Copyright terms: Public domain W3C validator