MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddrcl Structured version   Visualization version   GIF version

Theorem axaddrcl 10136
Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 10160 be used later. Instead, in most cases use readdcl 10182. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axaddrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)

Proof of Theorem axaddrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 10115 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 10115 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 oveq1 6808 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) = (𝐴 + ⟨𝑦, 0R⟩))
43eleq1d 2812 . 2 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 + ⟨𝑦, 0R⟩) ∈ ℝ))
5 oveq2 6809 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 + ⟨𝑦, 0R⟩) = (𝐴 + 𝐵))
65eleq1d 2812 . 2 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 + ⟨𝑦, 0R⟩) ∈ ℝ ↔ (𝐴 + 𝐵) ∈ ℝ))
7 addresr 10122 . . 3 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) = ⟨(𝑥 +R 𝑦), 0R⟩)
8 addclsr 10067 . . . 4 ((𝑥R𝑦R) → (𝑥 +R 𝑦) ∈ R)
9 opelreal 10114 . . . 4 (⟨(𝑥 +R 𝑦), 0R⟩ ∈ ℝ ↔ (𝑥 +R 𝑦) ∈ R)
108, 9sylibr 224 . . 3 ((𝑥R𝑦R) → ⟨(𝑥 +R 𝑦), 0R⟩ ∈ ℝ)
117, 10eqeltrd 2827 . 2 ((𝑥R𝑦R) → (⟨𝑥, 0R⟩ + ⟨𝑦, 0R⟩) ∈ ℝ)
121, 2, 4, 6, 112gencl 3364 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1620  wcel 2127  cop 4315  (class class class)co 6801  Rcnr 9850  0Rc0r 9851   +R cplr 9854  cr 10098   + caddc 10102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-omul 7722  df-er 7899  df-ec 7901  df-qs 7905  df-ni 9857  df-pli 9858  df-mi 9859  df-lti 9860  df-plpq 9893  df-mpq 9894  df-ltpq 9895  df-enq 9896  df-nq 9897  df-erq 9898  df-plq 9899  df-mq 9900  df-1nq 9901  df-rq 9902  df-ltnq 9903  df-np 9966  df-1p 9967  df-plp 9968  df-ltp 9970  df-enr 10040  df-nr 10041  df-plr 10042  df-0r 10045  df-c 10105  df-r 10109  df-add 10110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator