MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6evr Structured version   Visualization version   GIF version

Theorem ax6evr 1939
Description: A commuted form of ax6ev 1887. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr 𝑥 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6evr
StepHypRef Expression
1 ax6ev 1887 . 2 𝑥 𝑥 = 𝑦
2 equcomiv 1938 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2eximii 1761 1 𝑥 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932
This theorem depends on definitions:  df-bi 197  df-ex 1702
This theorem is referenced by:  ax7  1940  equviniva  1957  ax12v2  2046  ax12vOLD  2047  19.8a  2049  axc11n  2306  euequ1  2475  relopabi  5215  relop  5242  bj-ax6e  32348  axc11n11r  32368  wl-spae  32977
  Copyright terms: Public domain W3C validator