MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6evr Structured version   Visualization version   GIF version

Theorem ax6evr 2095
Description: A commuted form of ax6ev 2054. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr 𝑥 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6evr
StepHypRef Expression
1 ax6ev 2054 . 2 𝑥 𝑥 = 𝑦
2 equcomiv 2094 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2eximii 1911 1 𝑥 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wex 1851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088
This theorem depends on definitions:  df-bi 197  df-ex 1852
This theorem is referenced by:  ax7  2096  equviniva  2111  ax12v2  2196  19.8a  2197  axc11n  2449  euequ1  2611  relopabi  5399  relop  5426  bj-ax6e  32957  axc11n11r  32977  wl-spae  33617
  Copyright terms: Public domain W3C validator