![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax5e | Structured version Visualization version GIF version |
Description: A rephrasing of ax-5 1879 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
ax5e | ⊢ (∃𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1879 | . 2 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | |
2 | eximal 1747 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
3 | 1, 2 | mpbir 221 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1521 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: ax5ea 1882 exlimiv 1898 exlimdv 1901 19.21v 1908 19.23v 1911 19.36imv 1913 19.41v 1917 19.9v 1953 aeveq 2024 relopabi 5278 toprntopon 20777 bj-cbvexivw 32785 bj-eqs 32788 bj-snsetex 33076 bj-snglss 33083 topdifinffinlem 33325 ac6s6f 34111 fnchoice 39502 |
Copyright terms: Public domain | W3C validator |