Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax13fromc9 Structured version   Visualization version   GIF version

Theorem ax13fromc9 33638
Description: Derive ax-13 2250 from ax-c9 33622 and other older axioms.

This proof uses newer axioms ax-4 1734 and ax-6 1890, but since these are proved from the older axioms above, this is acceptable and lets us avoid having to reprove several earlier theorems to use ax-c4 33616 and ax-c10 33618. (Contributed by NM, 21-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
ax13fromc9 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))

Proof of Theorem ax13fromc9
StepHypRef Expression
1 ax-c5 33615 . . . 4 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
21con3i 150 . . 3 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
3 ax-c5 33615 . . . 4 (∀𝑥 𝑥 = 𝑧𝑥 = 𝑧)
43con3i 150 . . 3 𝑥 = 𝑧 → ¬ ∀𝑥 𝑥 = 𝑧)
5 ax-c9 33622 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)))
62, 4, 5syl2im 40 . 2 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)))
7 ax13b 1966 . 2 ((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))))
86, 7mpbir 221 1 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-c5 33615  ax-c9 33622
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator