![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax12w | Structured version Visualization version GIF version |
Description: Weak version of ax-12 2188 from which we can prove any ax-12 2188 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. An instance of the first hypothesis will normally require that 𝑥 and 𝑦 be distinct (unless 𝑥 does not occur in 𝜑). For an example of how the hypotheses can be eliminated when we substitute an expression without wff variables for 𝜑, see ax12wdemo 2153. (Contributed by NM, 10-Apr-2017.) |
Ref | Expression |
---|---|
ax12w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
ax12w.2 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
ax12w | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12w.2 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) | |
2 | 1 | spw 2110 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) |
3 | ax12w.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | ax12wlem 2150 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
5 | 2, 4 | syl5 34 | 1 ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1846 |
This theorem is referenced by: ax12wdemo 2153 |
Copyright terms: Public domain | W3C validator |