MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12w Structured version   Visualization version   GIF version

Theorem ax12w 2151
Description: Weak version of ax-12 2188 from which we can prove any ax-12 2188 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. An instance of the first hypothesis will normally require that 𝑥 and 𝑦 be distinct (unless 𝑥 does not occur in 𝜑). For an example of how the hypotheses can be eliminated when we substitute an expression without wff variables for 𝜑, see ax12wdemo 2153. (Contributed by NM, 10-Apr-2017.)
Hypotheses
Ref Expression
ax12w.1 (𝑥 = 𝑦 → (𝜑𝜓))
ax12w.2 (𝑦 = 𝑧 → (𝜑𝜒))
Assertion
Ref Expression
ax12w (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝑦,𝑧   𝜓,𝑥   𝜑,𝑧   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧)

Proof of Theorem ax12w
StepHypRef Expression
1 ax12w.2 . . 3 (𝑦 = 𝑧 → (𝜑𝜒))
21spw 2110 . 2 (∀𝑦𝜑𝜑)
3 ax12w.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
43ax12wlem 2150 . 2 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
52, 4syl5 34 1 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1846
This theorem is referenced by:  ax12wdemo  2153
  Copyright terms: Public domain W3C validator