MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12v2 Structured version   Visualization version   GIF version

Theorem ax12v2 2205
Description: It is possible to remove any restriction on 𝜑 in ax12v 2204. Same as Axiom C8 of [Monk2] p. 105. Use ax12v 2204 instead when sufficient. (Contributed by NM, 5-Aug-1993.) Removed dependencies on ax-10 2174 and ax-13 2408. (Revised by Jim Kingdon, 15-Dec-2017.) (Proof shortened by Wolf Lammen, 8-Dec-2019.)
Assertion
Ref Expression
ax12v2 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax12v2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equtrr 2107 . . 3 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
2 ax12v 2204 . . . 4 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
31imim1d 82 . . . . 5 (𝑦 = 𝑧 → ((𝑥 = 𝑧𝜑) → (𝑥 = 𝑦𝜑)))
43alimdv 1997 . . . 4 (𝑦 = 𝑧 → (∀𝑥(𝑥 = 𝑧𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
52, 4syl9r 78 . . 3 (𝑦 = 𝑧 → (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
61, 5syld 47 . 2 (𝑦 = 𝑧 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
7 ax6evr 2100 . 2 𝑧 𝑦 = 𝑧
86, 7exlimiiv 2011 1 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203
This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853
This theorem is referenced by:  sb56  2271  axc11rvOLD  2305  bj-ax12  32972  wl-lem-exsb  33682  wl-lem-moexsb  33684
  Copyright terms: Public domain W3C validator