Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax12inda Structured version   Visualization version   GIF version

Theorem ax12inda 34552
 Description: Induction step for constructing a substitution instance of ax-c15 34493 without using ax-c15 34493. Quantification case. (When 𝑧 and 𝑦 are distinct, ax12inda2 34551 may be used instead to avoid the dummy variable 𝑤 in the proof.) (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ax12inda.1 (¬ ∀𝑥 𝑥 = 𝑤 → (𝑥 = 𝑤 → (𝜑 → ∀𝑥(𝑥 = 𝑤𝜑))))
Assertion
Ref Expression
ax12inda (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤   𝑦,𝑤   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem ax12inda
StepHypRef Expression
1 ax6ev 1947 . . 3 𝑤 𝑤 = 𝑦
2 ax12inda.1 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑤 → (𝑥 = 𝑤 → (𝜑 → ∀𝑥(𝑥 = 𝑤𝜑))))
32ax12inda2 34551 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑤 → (𝑥 = 𝑤 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑))))
4 dveeq2-o 34537 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑤 = 𝑦 → ∀𝑥 𝑤 = 𝑦))
54imp 444 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → ∀𝑥 𝑤 = 𝑦)
6 hba1-o 34501 . . . . . . . . . 10 (∀𝑥 𝑤 = 𝑦 → ∀𝑥𝑥 𝑤 = 𝑦)
7 equequ2 1999 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝑥 = 𝑤𝑥 = 𝑦))
87sps-o 34512 . . . . . . . . . 10 (∀𝑥 𝑤 = 𝑦 → (𝑥 = 𝑤𝑥 = 𝑦))
96, 8albidh 1833 . . . . . . . . 9 (∀𝑥 𝑤 = 𝑦 → (∀𝑥 𝑥 = 𝑤 ↔ ∀𝑥 𝑥 = 𝑦))
109notbid 307 . . . . . . . 8 (∀𝑥 𝑤 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑤 ↔ ¬ ∀𝑥 𝑥 = 𝑦))
115, 10syl 17 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (¬ ∀𝑥 𝑥 = 𝑤 ↔ ¬ ∀𝑥 𝑥 = 𝑦))
127adantl 481 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (𝑥 = 𝑤𝑥 = 𝑦))
138imbi1d 330 . . . . . . . . . . 11 (∀𝑥 𝑤 = 𝑦 → ((𝑥 = 𝑤 → ∀𝑧𝜑) ↔ (𝑥 = 𝑦 → ∀𝑧𝜑)))
146, 13albidh 1833 . . . . . . . . . 10 (∀𝑥 𝑤 = 𝑦 → (∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))
155, 14syl 17 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))
1615imbi2d 329 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → ((∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑)) ↔ (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))
1712, 16imbi12d 333 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → ((𝑥 = 𝑤 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑))) ↔ (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))))
1811, 17imbi12d 333 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → ((¬ ∀𝑥 𝑥 = 𝑤 → (𝑥 = 𝑤 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑)))) ↔ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))))
193, 18mpbii 223 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))))
2019ex 449 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑤 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))))
2120exlimdv 1901 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑤 𝑤 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))))
221, 21mpi 20 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))))
2322pm2.43i 52 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1521  ∃wex 1744 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-c5 34487  ax-c4 34488  ax-c7 34489  ax-c10 34490  ax-c11 34491  ax-c9 34494  ax-c16 34496 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator