Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax10fromc7 Structured version   Visualization version   GIF version

Theorem ax10fromc7 34499
 Description: Rederivation of axiom ax-10 2059 from ax-c7 34489, ax-c4 34488, ax-c5 34487, ax-gen 1762 and propositional calculus. See axc7 2170 for the derivation of ax-c7 34489 from ax-10 2059. (Contributed by NM, 23-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax10fromc7 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)

Proof of Theorem ax10fromc7
StepHypRef Expression
1 ax-c4 34488 . . 3 (∀𝑥(∀𝑥 ¬ ∀𝑥𝑥𝜑 → ¬ ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑))
2 ax-c5 34487 . . . 4 (∀𝑥 ¬ ∀𝑥𝑥𝜑 → ¬ ∀𝑥𝑥𝜑)
3 ax-c4 34488 . . . . 5 (∀𝑥(∀𝑥𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑 → ∀𝑥𝑥𝜑))
4 id 22 . . . . 5 (∀𝑥𝜑 → ∀𝑥𝜑)
53, 4mpg 1764 . . . 4 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
62, 5nsyl 135 . . 3 (∀𝑥 ¬ ∀𝑥𝑥𝜑 → ¬ ∀𝑥𝜑)
71, 6mpg 1764 . 2 (∀𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
8 ax-c7 34489 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝑥𝜑 → ∀𝑥𝜑)
97, 8nsyl4 156 1 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-c5 34487  ax-c4 34488  ax-c7 34489 This theorem is referenced by:  hba1-o  34501  axc5c711  34522  equidq  34528
 Copyright terms: Public domain W3C validator