Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-un Structured version   Visualization version   GIF version

Axiom ax-un 7102
 Description: Axiom of Union. An axiom of Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the union of a given set 𝑥 i.e. the collection of all members of the members of 𝑥. The variant axun2 7104 states that the union itself exists. A version with the standard abbreviation for union is uniex2 7105. A version using class notation is uniex 7106. The union of a class df-uni 4577 should not be confused with the union of two classes df-un 3708. Their relationship is shown in unipr 4589. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
ax-un 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
Distinct variable group:   𝑥,𝑤,𝑦,𝑧

Detailed syntax breakdown of Axiom ax-un
StepHypRef Expression
1 vz . . . . . . 7 setvar 𝑧
2 vw . . . . . . 7 setvar 𝑤
31, 2wel 2128 . . . . . 6 wff 𝑧𝑤
4 vx . . . . . . 7 setvar 𝑥
52, 4wel 2128 . . . . . 6 wff 𝑤𝑥
63, 5wa 383 . . . . 5 wff (𝑧𝑤𝑤𝑥)
76, 2wex 1841 . . . 4 wff 𝑤(𝑧𝑤𝑤𝑥)
8 vy . . . . 5 setvar 𝑦
91, 8wel 2128 . . . 4 wff 𝑧𝑦
107, 9wi 4 . . 3 wff (∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
1110, 1wal 1618 . 2 wff 𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
1211, 8wex 1841 1 wff 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
 Colors of variables: wff setvar class This axiom is referenced by:  zfun  7103  axun2  7104
 Copyright terms: Public domain W3C validator