Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-sep Structured version   Visualization version   GIF version

Axiom ax-sep 4751
 Description: The Axiom of Separation of ZF set theory. See axsep 4750 for more information. It was derived as axsep 4750 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
ax-sep 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Axiom ax-sep
StepHypRef Expression
1 vx . . . . 5 setvar 𝑥
2 vy . . . . 5 setvar 𝑦
31, 2wel 1988 . . . 4 wff 𝑥𝑦
4 vz . . . . . 6 setvar 𝑧
51, 4wel 1988 . . . . 5 wff 𝑥𝑧
6 wph . . . . 5 wff 𝜑
75, 6wa 384 . . . 4 wff (𝑥𝑧𝜑)
83, 7wb 196 . . 3 wff (𝑥𝑦 ↔ (𝑥𝑧𝜑))
98, 1wal 1478 . 2 wff 𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
109, 2wex 1701 1 wff 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
 Colors of variables: wff setvar class This axiom is referenced by:  axsep2  4752  zfauscl  4753  bm1.3ii  4754  ax6vsep  4755  axnul  4758  nalset  4765  bj-nalset  32490  bj-axsep2  32621
 Copyright terms: Public domain W3C validator