MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-i2m1 Structured version   Visualization version   GIF version

Axiom ax-i2m1 10042
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by theorem axi2m1 10018. (Contributed by NM, 29-Jan-1995.)
Assertion
Ref Expression
ax-i2m1 ((i · i) + 1) = 0

Detailed syntax breakdown of Axiom ax-i2m1
StepHypRef Expression
1 ci 9976 . . . 4 class i
2 cmul 9979 . . . 4 class ·
31, 1, 2co 6690 . . 3 class (i · i)
4 c1 9975 . . 3 class 1
5 caddc 9977 . . 3 class +
63, 4, 5co 6690 . 2 class ((i · i) + 1)
7 cc0 9974 . 2 class 0
86, 7wceq 1523 1 wff ((i · i) + 1) = 0
Colors of variables: wff setvar class
This axiom is referenced by:  0cn  10070  mul02lem2  10251  addid1  10254  cnegex2  10256  ine0  10503  ixi  10694  inelr  11048
  Copyright terms: Public domain W3C validator