![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chil 27904 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2030 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2030 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 383 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | cva 27905 | . . . 4 class +ℎ | |
8 | 1, 4, 7 | co 6690 | . . 3 class (𝐴 +ℎ 𝐵) |
9 | 4, 1, 7 | co 6690 | . . 3 class (𝐵 +ℎ 𝐴) |
10 | 8, 9 | wceq 1523 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvcomi 28004 hvaddid2 28008 hvadd32 28019 hvadd12 28020 hvpncan2 28025 hvsub32 28030 hvaddcan2 28056 hilablo 28145 hhssabloi 28247 shscom 28306 pjhtheu2 28403 pjpjpre 28406 pjpo 28415 spanunsni 28566 chscllem4 28627 hoaddcomi 28759 pjimai 29163 superpos 29341 sumdmdii 29402 cdj3lem3 29425 cdj3lem3b 29427 |
Copyright terms: Public domain | W3C validator |