![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chil 27904 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2030 | . 2 wff 𝐴 ∈ ℋ |
4 | c0v 27909 | . . . 4 class 0ℎ | |
5 | cva 27905 | . . . 4 class +ℎ | |
6 | 1, 4, 5 | co 6690 | . . 3 class (𝐴 +ℎ 0ℎ) |
7 | 6, 1 | wceq 1523 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvaddid2 28008 hvpncan 28024 hvsubeq0i 28048 hvsubcan2i 28049 hvsubaddi 28051 hvsub0 28061 hvaddsub4 28063 norm3difi 28132 shsel1 28308 shunssi 28355 omlsilem 28389 pjoc1i 28418 pjchi 28419 spansncvi 28639 5oalem1 28641 5oalem2 28642 3oalem2 28650 pjssmii 28668 hoaddid1i 28773 lnop0 28953 lnopmul 28954 lnfn0i 29029 lnfnmuli 29031 pjclem4 29186 pj3si 29194 hst1h 29214 sumdmdlem 29405 |
Copyright terms: Public domain | W3C validator |