![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version |
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 28989 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 10097 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2127 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | chil 28056 | . . . 4 class ℋ | |
6 | 4, 5 | wcel 2127 | . . 3 wff 𝐵 ∈ ℋ |
7 | cC | . . . 4 class 𝐶 | |
8 | 7, 5 | wcel 2127 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 6, 8 | w3a 1072 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
10 | csm 28058 | . . . . 5 class ·ℎ | |
11 | 1, 4, 10 | co 6801 | . . . 4 class (𝐴 ·ℎ 𝐵) |
12 | csp 28059 | . . . 4 class ·ih | |
13 | 11, 7, 12 | co 6801 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
14 | 4, 7, 12 | co 6801 | . . . 4 class (𝐵 ·ih 𝐶) |
15 | cmul 10104 | . . . 4 class · | |
16 | 1, 14, 15 | co 6801 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
17 | 13, 16 | wceq 1620 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: his5 28223 his35 28225 hiassdi 28228 his2sub 28229 hi01 28233 normlem0 28246 normlem9 28255 bcseqi 28257 polid2i 28294 ocsh 28422 h1de2i 28692 normcan 28715 eigrei 28973 eigorthi 28976 bramul 29085 lnopunilem1 29149 hmopm 29160 riesz3i 29201 cnlnadjlem2 29207 adjmul 29231 branmfn 29244 kbass2 29256 kbass5 29259 leopmuli 29272 leopnmid 29277 |
Copyright terms: Public domain | W3C validator |