![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version |
Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hilex | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chil 27904 | . 2 class ℋ | |
2 | cvv 3231 | . 2 class V | |
3 | 1, 2 | wcel 2030 | 1 wff ℋ ∈ V |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmulex 27996 hilablo 28145 hhph 28163 hcau 28169 hlimadd 28178 hhcms 28188 issh 28193 shex 28197 hlim0 28220 hhssva 28242 hhsssm 28243 hhssnm 28244 hhshsslem1 28252 hhsscms 28264 ocval 28267 spanval 28320 hsupval 28321 sshjval 28337 sshjval3 28341 pjhfval 28383 pjmfn 28702 pjmf1 28703 hosmval 28722 hommval 28723 hodmval 28724 hfsmval 28725 hfmmval 28726 nmopval 28843 elcnop 28844 ellnop 28845 elunop 28859 elhmop 28860 hmopex 28862 nmfnval 28863 nlfnval 28868 elcnfn 28869 ellnfn 28870 dmadjss 28874 dmadjop 28875 adjeu 28876 adjval 28877 eigvecval 28883 eigvalfval 28884 specval 28885 hhcno 28891 hhcnf 28892 adjeq 28922 brafval 28930 kbfval 28939 adjbdln 29070 rnbra 29094 bra11 29095 leoprf2 29114 ishst 29201 |
Copyright terms: Public domain | W3C validator |