![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version |
Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 9491, but is weak enough that it can be proven using DC (see axcc 9472). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . 4 setvar 𝑥 | |
2 | 1 | cv 1631 | . . 3 class 𝑥 |
3 | com 7230 | . . 3 class ω | |
4 | cen 8118 | . . 3 class ≈ | |
5 | 2, 3, 4 | wbr 4804 | . 2 wff 𝑥 ≈ ω |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1631 | . . . . . 6 class 𝑧 |
8 | c0 4058 | . . . . . 6 class ∅ | |
9 | 7, 8 | wne 2932 | . . . . 5 wff 𝑧 ≠ ∅ |
10 | vf | . . . . . . . 8 setvar 𝑓 | |
11 | 10 | cv 1631 | . . . . . . 7 class 𝑓 |
12 | 7, 11 | cfv 6049 | . . . . . 6 class (𝑓‘𝑧) |
13 | 12, 7 | wcel 2139 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
15 | 14, 6, 2 | wral 3050 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
16 | 15, 10 | wex 1853 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff setvar class |
This axiom is referenced by: axcc2lem 9450 axccdom 39915 axccd 39928 |
Copyright terms: Public domain | W3C validator |