Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-c14 Structured version   Visualization version   GIF version

Axiom ax-c14 34692
 Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms for a non-logical predicate in our predicate calculus with equality. Axiom scheme C14' in [Megill] p. 448 (p. 16 of the preprint). It is redundant if we include ax-5 1990; see theorem axc14 2518. Alternately, ax-5 1990 becomes unnecessary in principle with this axiom, but we lose the more powerful metalogic afforded by ax-5 1990. We retain ax-c14 34692 here to provide completeness for systems with the simpler metalogic that results from omitting ax-5 1990, which might be easier to study for some theoretical purposes. This axiom is obsolete and should no longer be used. It is proved above as theorem axc14 2518. (Contributed by NM, 24-Jun-1993.) (New usage is discouraged.)
Assertion
Ref Expression
ax-c14 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∀𝑧 𝑥𝑦)))

Detailed syntax breakdown of Axiom ax-c14
StepHypRef Expression
1 vz . . . . 5 setvar 𝑧
2 vx . . . . 5 setvar 𝑥
31, 2weq 2042 . . . 4 wff 𝑧 = 𝑥
43, 1wal 1628 . . 3 wff 𝑧 𝑧 = 𝑥
54wn 3 . 2 wff ¬ ∀𝑧 𝑧 = 𝑥
6 vy . . . . . 6 setvar 𝑦
71, 6weq 2042 . . . . 5 wff 𝑧 = 𝑦
87, 1wal 1628 . . . 4 wff 𝑧 𝑧 = 𝑦
98wn 3 . . 3 wff ¬ ∀𝑧 𝑧 = 𝑦
102, 6wel 2145 . . . 4 wff 𝑥𝑦
1110, 1wal 1628 . . . 4 wff 𝑧 𝑥𝑦
1210, 11wi 4 . . 3 wff (𝑥𝑦 → ∀𝑧 𝑥𝑦)
139, 12wi 4 . 2 wff (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∀𝑧 𝑥𝑦))
145, 13wi 4 1 wff (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∀𝑧 𝑥𝑦)))
 Colors of variables: wff setvar class This axiom is referenced by:  ax5el  34738  ax12el  34743
 Copyright terms: Public domain W3C validator