MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-ac Structured version   Visualization version   GIF version

Axiom ax-ac 8974
Description: Axiom of Choice. The Axiom of Choice (AC) is usually considered an extension of ZF set theory rather than a proper part of it. It is sometimes considered philosophically controversial because it asserts the existence of a set without telling us what the set is. ZF set theory that includes AC is called ZFC.

The unpublished version given here says that given any set 𝑥, there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. See the rewritten version ac3 8977 for a more detailed explanation. Theorem ac2 8976 shows an equivalent written compactly with restricted quantifiers.

This version was specifically crafted to be short when expanded to primitives. Kurt Maes' 5-quantifier version ackm 8980 is slightly shorter when the biconditional of ax-ac 8974 is expanded into implication and negation. In axac3 8979 we allow the constant CHOICE to represent the Axiom of Choice; this simplifies the representation of theorems like gchac 9191 (the Generalized Continuum Hypothesis implies the Axiom of Choice).

Standard textbook versions of AC are derived as ac8 9007, ac5 8992, and ac7 8988. The Axiom of Regularity ax-reg 8190 (among others) is used to derive our version from the standard ones; this reverse derivation is shown as theorem dfac2 8646. Equivalents to AC are the well-ordering theorem weth 9010 and Zorn's lemma zorn 9022. See ac4 8990 for comments about stronger versions of AC.

In order to avoid uses of ax-reg 8190 for derivation of AC equivalents, we provide ax-ac2 8978 (due to Kurt Maes), which is equivalent to the standard AC of textbooks. The derivation of ax-ac2 8978 from ax-ac 8974 is shown by theorem axac2 8981, and the reverse derivation by axac 8982. Therefore, new proofs should normally use ax-ac2 8978 instead. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.)

Assertion
Ref Expression
ax-ac 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡

Detailed syntax breakdown of Axiom ax-ac
StepHypRef Expression
1 vz . . . . . . 7 setvar 𝑧
2 vw . . . . . . 7 setvar 𝑤
31, 2wel 1938 . . . . . 6 wff 𝑧𝑤
4 vx . . . . . . 7 setvar 𝑥
52, 4wel 1938 . . . . . 6 wff 𝑤𝑥
63, 5wa 378 . . . . 5 wff (𝑧𝑤𝑤𝑥)
7 vu . . . . . . . . . . . 12 setvar 𝑢
87, 2wel 1938 . . . . . . . . . . 11 wff 𝑢𝑤
9 vt . . . . . . . . . . . 12 setvar 𝑡
102, 9wel 1938 . . . . . . . . . . 11 wff 𝑤𝑡
118, 10wa 378 . . . . . . . . . 10 wff (𝑢𝑤𝑤𝑡)
127, 9wel 1938 . . . . . . . . . . 11 wff 𝑢𝑡
13 vy . . . . . . . . . . . 12 setvar 𝑦
149, 13wel 1938 . . . . . . . . . . 11 wff 𝑡𝑦
1512, 14wa 378 . . . . . . . . . 10 wff (𝑢𝑡𝑡𝑦)
1611, 15wa 378 . . . . . . . . 9 wff ((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦))
1716, 9wex 1692 . . . . . . . 8 wff 𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦))
18 vv . . . . . . . . 9 setvar 𝑣
197, 18weq 1822 . . . . . . . 8 wff 𝑢 = 𝑣
2017, 19wb 191 . . . . . . 7 wff (∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)
2120, 7wal 1466 . . . . . 6 wff 𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)
2221, 18wex 1692 . . . . 5 wff 𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)
236, 22wi 4 . . . 4 wff ((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2423, 2wal 1466 . . 3 wff 𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2524, 1wal 1466 . 2 wff 𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2625, 13wex 1692 1 wff 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
Colors of variables: wff setvar class
This axiom is referenced by:  zfac  8975  ac2  8976
  Copyright terms: Public domain W3C validator