 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-ac Structured version   Visualization version   GIF version

Axiom ax-ac 9225
 Description: Axiom of Choice. The Axiom of Choice (AC) is usually considered an extension of ZF set theory rather than a proper part of it. It is sometimes considered philosophically controversial because it asserts the existence of a set without telling us what the set is. ZF set theory that includes AC is called ZFC. The unpublished version given here says that given any set 𝑥, there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. See the rewritten version ac3 9228 for a more detailed explanation. Theorem ac2 9227 shows an equivalent written compactly with restricted quantifiers. This version was specifically crafted to be short when expanded to primitives. Kurt Maes' 5-quantifier version ackm 9231 is slightly shorter when the biconditional of ax-ac 9225 is expanded into implication and negation. In axac3 9230 we allow the constant CHOICE to represent the Axiom of Choice; this simplifies the representation of theorems like gchac 9447 (the Generalized Continuum Hypothesis implies the Axiom of Choice). Standard textbook versions of AC are derived as ac8 9258, ac5 9243, and ac7 9239. The Axiom of Regularity ax-reg 8441 (among others) is used to derive our version from the standard ones; this reverse derivation is shown as theorem dfac2 8897. Equivalents to AC are the well-ordering theorem weth 9261 and Zorn's lemma zorn 9273. See ac4 9241 for comments about stronger versions of AC. In order to avoid uses of ax-reg 8441 for derivation of AC equivalents, we provide ax-ac2 9229 (due to Kurt Maes), which is equivalent to the standard AC of textbooks. The derivation of ax-ac2 9229 from ax-ac 9225 is shown by theorem axac2 9232, and the reverse derivation by axac 9233. Therefore, new proofs should normally use ax-ac2 9229 instead. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.)
Assertion
Ref Expression
ax-ac 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡

Detailed syntax breakdown of Axiom ax-ac
StepHypRef Expression
1 vz . . . . . . 7 setvar 𝑧
2 vw . . . . . . 7 setvar 𝑤
31, 2wel 1988 . . . . . 6 wff 𝑧𝑤
4 vx . . . . . . 7 setvar 𝑥
52, 4wel 1988 . . . . . 6 wff 𝑤𝑥
63, 5wa 384 . . . . 5 wff (𝑧𝑤𝑤𝑥)
7 vu . . . . . . . . . . . 12 setvar 𝑢
87, 2wel 1988 . . . . . . . . . . 11 wff 𝑢𝑤
9 vt . . . . . . . . . . . 12 setvar 𝑡
102, 9wel 1988 . . . . . . . . . . 11 wff 𝑤𝑡
118, 10wa 384 . . . . . . . . . 10 wff (𝑢𝑤𝑤𝑡)
127, 9wel 1988 . . . . . . . . . . 11 wff 𝑢𝑡
13 vy . . . . . . . . . . . 12 setvar 𝑦
149, 13wel 1988 . . . . . . . . . . 11 wff 𝑡𝑦
1512, 14wa 384 . . . . . . . . . 10 wff (𝑢𝑡𝑡𝑦)
1611, 15wa 384 . . . . . . . . 9 wff ((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦))
1716, 9wex 1701 . . . . . . . 8 wff 𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦))
18 vv . . . . . . . . 9 setvar 𝑣
197, 18weq 1871 . . . . . . . 8 wff 𝑢 = 𝑣
2017, 19wb 196 . . . . . . 7 wff (∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)
2120, 7wal 1478 . . . . . 6 wff 𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)
2221, 18wex 1701 . . . . 5 wff 𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)
236, 22wi 4 . . . 4 wff ((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2423, 2wal 1478 . . 3 wff 𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2524, 1wal 1478 . 2 wff 𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2625, 13wex 1701 1 wff 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
 Colors of variables: wff setvar class This axiom is referenced by:  zfac  9226  ac2  9227
 Copyright terms: Public domain W3C validator