![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ausgrumgri | Structured version Visualization version GIF version |
Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
ausgr.1 | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}} |
Ref | Expression |
---|---|
ausgrumgri | ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6239 | . . . . 5 ⊢ (Vtx‘𝐻) ∈ V | |
2 | fvex 6239 | . . . . 5 ⊢ (Edg‘𝐻) ∈ V | |
3 | ausgr.1 | . . . . . 6 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}} | |
4 | 3 | isausgr 26104 | . . . . 5 ⊢ (((Vtx‘𝐻) ∈ V ∧ (Edg‘𝐻) ∈ V) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) |
5 | 1, 2, 4 | mp2an 708 | . . . 4 ⊢ ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) |
6 | edgval 25986 | . . . . . . 7 ⊢ (Edg‘𝐻) = ran (iEdg‘𝐻) | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝐻 ∈ 𝑊 → (Edg‘𝐻) = ran (iEdg‘𝐻)) |
8 | 7 | sseq1d 3665 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ↔ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) |
9 | funfn 5956 | . . . . . . . . 9 ⊢ (Fun (iEdg‘𝐻) ↔ (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) | |
10 | 9 | biimpi 206 | . . . . . . . 8 ⊢ (Fun (iEdg‘𝐻) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
11 | 10 | 3ad2ant3 1104 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
12 | simp2 1082 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) | |
13 | df-f 5930 | . . . . . . 7 ⊢ ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ↔ ((iEdg‘𝐻) Fn dom (iEdg‘𝐻) ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) | |
14 | 11, 12, 13 | sylanbrc 699 | . . . . . 6 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) |
15 | 14 | 3exp 1283 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → (ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}))) |
16 | 8, 15 | sylbid 230 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}))) |
17 | 5, 16 | syl5bi 232 | . . 3 ⊢ (𝐻 ∈ 𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}))) |
18 | 17 | 3imp 1275 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) |
19 | eqid 2651 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
20 | eqid 2651 | . . . 4 ⊢ (iEdg‘𝐻) = (iEdg‘𝐻) | |
21 | 19, 20 | isumgrs 26036 | . . 3 ⊢ (𝐻 ∈ 𝑊 → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) |
22 | 21 | 3ad2ant1 1102 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) |
23 | 18, 22 | mpbird 247 | 1 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 ⊆ wss 3607 𝒫 cpw 4191 class class class wbr 4685 {copab 4745 dom cdm 5143 ran crn 5144 Fun wfun 5920 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 2c2 11108 #chash 13157 Vtxcvtx 25919 iEdgciedg 25920 Edgcedg 25984 UMGraphcumgr 26021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 df-edg 25985 df-umgr 26023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |