![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atssch | Structured version Visualization version GIF version |
Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atssch | ⊢ HAtoms ⊆ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-at 29506 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
2 | ssrab2 3828 | . 2 ⊢ {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} ⊆ Cℋ | |
3 | 1, 2 | eqsstri 3776 | 1 ⊢ HAtoms ⊆ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: {crab 3054 ⊆ wss 3715 class class class wbr 4804 Cℋ cch 28095 0ℋc0h 28101 ⋖ℋ ccv 28130 HAtomscat 28131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-in 3722 df-ss 3729 df-at 29506 |
This theorem is referenced by: atelch 29512 shatomistici 29529 hatomistici 29530 chpssati 29531 |
Copyright terms: Public domain | W3C validator |