![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atssbase | Structured version Visualization version GIF version |
Description: The set of atoms is a subset of the base set. (atssch 29330 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atombase.b | ⊢ 𝐵 = (Base‘𝐾) |
atombase.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atssbase | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atombase.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | atombase.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atbase 34894 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
4 | 3 | ssriv 3640 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ⊆ wss 3607 ‘cfv 5926 Basecbs 15904 Atomscatm 34868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ats 34872 |
This theorem is referenced by: atlatmstc 34924 atlatle 34925 pmapssbaN 35364 pmaple 35365 polsubN 35511 2polvalN 35518 2polssN 35519 3polN 35520 2pmaplubN 35530 paddunN 35531 poldmj1N 35532 pnonsingN 35537 ispsubcl2N 35551 psubclinN 35552 paddatclN 35553 polsubclN 35556 poml4N 35557 |
Copyright terms: Public domain | W3C validator |