HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atomli Structured version   Visualization version   GIF version

Theorem atomli 29581
Description: An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition 3.2.17 of [PtakPulmannova] p. 66. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atoml.1 𝐴C
Assertion
Ref Expression
atomli (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}))

Proof of Theorem atomli
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atoml.1 . . . . . . . . 9 𝐴C
2 atelch 29543 . . . . . . . . 9 (𝐵 ∈ HAtoms → 𝐵C )
3 chjcl 28556 . . . . . . . . 9 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
41, 2, 3sylancr 575 . . . . . . . 8 (𝐵 ∈ HAtoms → (𝐴 𝐵) ∈ C )
51choccli 28506 . . . . . . . 8 (⊥‘𝐴) ∈ C
6 chincl 28698 . . . . . . . 8 (((𝐴 𝐵) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C )
74, 5, 6sylancl 574 . . . . . . 7 (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C )
8 hatomic 29559 . . . . . . 7 ((((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)))
97, 8sylan 569 . . . . . 6 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)))
10 atelch 29543 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ HAtoms → 𝑥C )
11 inss2 3982 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (⊥‘𝐴)
12 sstr 3760 . . . . . . . . . . . . . . . . . 18 ((𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (⊥‘𝐴)) → 𝑥 ⊆ (⊥‘𝐴))
1311, 12mpan2 671 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → 𝑥 ⊆ (⊥‘𝐴))
141pjococi 28636 . . . . . . . . . . . . . . . . . . . . 21 (⊥‘(⊥‘𝐴)) = 𝐴
1514oveq1i 6803 . . . . . . . . . . . . . . . . . . . 20 ((⊥‘(⊥‘𝐴)) ∨ 𝑥) = (𝐴 𝑥)
1615ineq1i 3961 . . . . . . . . . . . . . . . . . . 19 (((⊥‘(⊥‘𝐴)) ∨ 𝑥) ∩ (⊥‘𝐴)) = ((𝐴 𝑥) ∩ (⊥‘𝐴))
17 incom 3956 . . . . . . . . . . . . . . . . . . 19 (((⊥‘(⊥‘𝐴)) ∨ 𝑥) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥))
1816, 17eqtr3i 2795 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝑥) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥))
19 pjoml3 28811 . . . . . . . . . . . . . . . . . . . 20 (((⊥‘𝐴) ∈ C𝑥C ) → (𝑥 ⊆ (⊥‘𝐴) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥))
205, 19mpan 670 . . . . . . . . . . . . . . . . . . 19 (𝑥C → (𝑥 ⊆ (⊥‘𝐴) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥))
2120imp 393 . . . . . . . . . . . . . . . . . 18 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥)
2218, 21syl5eq 2817 . . . . . . . . . . . . . . . . 17 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
2310, 13, 22syl2an 583 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
2423ad2ant2lr 742 . . . . . . . . . . . . . . 15 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
25 inss1 3981 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (𝐴 𝐵)
26 sstr 3760 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (𝐴 𝐵)) → 𝑥 ⊆ (𝐴 𝐵))
2725, 26mpan2 671 . . . . . . . . . . . . . . . . . . 19 (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → 𝑥 ⊆ (𝐴 𝐵))
28 chub1 28706 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴C𝐵C ) → 𝐴 ⊆ (𝐴 𝐵))
291, 28mpan 670 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵C𝐴 ⊆ (𝐴 𝐵))
3029adantr 466 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑥C ) → 𝐴 ⊆ (𝐴 𝐵))
311, 3mpan 670 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵C → (𝐴 𝐵) ∈ C )
32 chlub 28708 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴C𝑥C ∧ (𝐴 𝐵) ∈ C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
331, 32mp3an1 1559 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥C ∧ (𝐴 𝐵) ∈ C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3431, 33sylan2 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥C𝐵C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3534biimpd 219 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥C𝐵C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3635ancoms 455 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑥C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3730, 36mpand 675 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵C𝑥C ) → (𝑥 ⊆ (𝐴 𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
382, 10, 37syl2an 583 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥 ⊆ (𝐴 𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3938imp 393 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
4027, 39sylan2 580 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
4140adantrr 696 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
42 chjcl 28556 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴C𝑥C ) → (𝐴 𝑥) ∈ C )
431, 10, 42sylancr 575 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ HAtoms → (𝐴 𝑥) ∈ C )
442, 43anim12i 600 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝐵C ∧ (𝐴 𝑥) ∈ C ))
4544adantr 466 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐵C ∧ (𝐴 𝑥) ∈ C ))
46 chub1 28706 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑥C ) → 𝐴 ⊆ (𝐴 𝑥))
471, 10, 46sylancr 575 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ HAtoms → 𝐴 ⊆ (𝐴 𝑥))
4847ad2antlr 706 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝐴 ⊆ (𝐴 𝑥))
49 pm3.22 449 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
5049adantr 466 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
5127adantl 467 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → 𝑥 ⊆ (𝐴 𝐵))
52 incom 3956 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝑥) = (𝑥𝐴)
53 chsh 28421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥C𝑥S )
541chshii 28424 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴S
55 orthin 28645 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥S𝐴S ) → (𝑥 ⊆ (⊥‘𝐴) → (𝑥𝐴) = 0))
5653, 54, 55sylancl 574 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥C → (𝑥 ⊆ (⊥‘𝐴) → (𝑥𝐴) = 0))
5756imp 393 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → (𝑥𝐴) = 0)
5852, 57syl5eq 2817 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → (𝐴𝑥) = 0)
5910, 13, 58syl2an 583 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝐴𝑥) = 0)
6051, 59jca 501 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0))
6160ad2ant2lr 742 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0))
62 atexch 29580 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0) → 𝐵 ⊆ (𝐴 𝑥)))
631, 62mp3an1 1559 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0) → 𝐵 ⊆ (𝐴 𝑥)))
6450, 61, 63sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝐵 ⊆ (𝐴 𝑥))
65 chlub 28708 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴C𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) ↔ (𝐴 𝐵) ⊆ (𝐴 𝑥)))
661, 65mp3an1 1559 . . . . . . . . . . . . . . . . . . . 20 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) ↔ (𝐴 𝐵) ⊆ (𝐴 𝑥)))
6766biimpd 219 . . . . . . . . . . . . . . . . . . 19 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) → (𝐴 𝐵) ⊆ (𝐴 𝑥)))
6867expd 400 . . . . . . . . . . . . . . . . . 18 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → (𝐴 ⊆ (𝐴 𝑥) → (𝐵 ⊆ (𝐴 𝑥) → (𝐴 𝐵) ⊆ (𝐴 𝑥))))
6945, 48, 64, 68syl3c 66 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝐵) ⊆ (𝐴 𝑥))
7041, 69eqssd 3769 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝑥) = (𝐴 𝐵))
7170ineq1d 3964 . . . . . . . . . . . . . . 15 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = ((𝐴 𝐵) ∩ (⊥‘𝐴)))
7224, 71eqtr3d 2807 . . . . . . . . . . . . . 14 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝑥 = ((𝐴 𝐵) ∩ (⊥‘𝐴)))
7372eleq1d 2835 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
7473exp43 423 . . . . . . . . . . . 12 (𝐵 ∈ HAtoms → (𝑥 ∈ HAtoms → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))))
7574com24 95 . . . . . . . . . . 11 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (𝑥 ∈ HAtoms → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))))
7675imp31 404 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ∈ HAtoms → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
7776ibd 258 . . . . . . . . 9 (((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
7877ex 397 . . . . . . . 8 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (𝑥 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
7978com23 86 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (𝑥 ∈ HAtoms → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
8079rexlimdv 3178 . . . . . 6 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
819, 80mpd 15 . . . . 5 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)
8281ex 397 . . . 4 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
8382necon1bd 2961 . . 3 (𝐵 ∈ HAtoms → (¬ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
8483orrd 852 . 2 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
85 elun 3904 . . 3 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0}))
86 fvex 6342 . . . . . 6 (⊥‘𝐴) ∈ V
8786inex2 4934 . . . . 5 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ V
8887elsn 4331 . . . 4 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0} ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0)
8988orbi2i 898 . . 3 ((((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
9085, 89bitri 264 . 2 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
9184, 90sylibr 224 1 (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cun 3721  cin 3722  wss 3723  {csn 4316  cfv 6031  (class class class)co 6793   S csh 28125   C cch 28126  cort 28127   chj 28130  0c0h 28132  HAtomscat 28162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218  ax-hilex 28196  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvmulass 28204  ax-hvdistr1 28205  ax-hvdistr2 28206  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his2 28280  ax-his3 28281  ax-his4 28282  ax-hcompl 28399
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-cn 21252  df-cnp 21253  df-lm 21254  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cfil 23272  df-cau 23273  df-cmet 23274  df-grpo 27687  df-gid 27688  df-ginv 27689  df-gdiv 27690  df-ablo 27739  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-vs 27794  df-nmcv 27795  df-ims 27796  df-dip 27896  df-ssp 27917  df-ph 28008  df-cbn 28059  df-hnorm 28165  df-hba 28166  df-hvsub 28168  df-hlim 28169  df-hcau 28170  df-sh 28404  df-ch 28418  df-oc 28449  df-ch0 28450  df-shs 28507  df-span 28508  df-chj 28509  df-chsup 28510  df-pjh 28594  df-cv 29478  df-at 29537
This theorem is referenced by:  atoml2i  29582
  Copyright terms: Public domain W3C validator