Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnlt Structured version   Visualization version   GIF version

Theorem atnlt 35121
Description: Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atnlt.s < = (lt‘𝐾)
atnlt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnlt ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃 < 𝑄)

Proof of Theorem atnlt
StepHypRef Expression
1 atnlt.s . . . . 5 < = (lt‘𝐾)
21pltirr 17184 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 < 𝑃)
323adant3 1127 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃 < 𝑃)
4 breq2 4808 . . . 4 (𝑃 = 𝑄 → (𝑃 < 𝑃𝑃 < 𝑄))
54notbid 307 . . 3 (𝑃 = 𝑄 → (¬ 𝑃 < 𝑃 ↔ ¬ 𝑃 < 𝑄))
63, 5syl5ibcom 235 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → ¬ 𝑃 < 𝑄))
7 eqid 2760 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 1pltle 17182 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 < 𝑄𝑃(le‘𝐾)𝑄))
9 atnlt.a . . . . 5 𝐴 = (Atoms‘𝐾)
107, 9atcmp 35119 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃(le‘𝐾)𝑄𝑃 = 𝑄))
118, 10sylibd 229 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 < 𝑄𝑃 = 𝑄))
1211necon3ad 2945 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ¬ 𝑃 < 𝑄))
136, 12pm2.61dne 3018 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑃 < 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  lecple 16170  ltcplt 17162  Atomscatm 35071  AtLatcal 35072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-preset 17149  df-poset 17167  df-plt 17179  df-glb 17196  df-p0 17260  df-lat 17267  df-covers 35074  df-ats 35075  df-atl 35106
This theorem is referenced by:  atltcvr  35242  llnnleat  35320
  Copyright terms: Public domain W3C validator