Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atn0 Structured version   Visualization version   GIF version

Theorem atn0 35117
Description: An atom is not zero. (atne0 29544 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atne0.z 0 = (0.‘𝐾)
atne0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atn0 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃0 )

Proof of Theorem atn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2771 . . . 4 (le‘𝐾) = (le‘𝐾)
3 atne0.z . . . 4 0 = (0.‘𝐾)
4 atne0.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat3 35116 . . 3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 𝑃0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
6 simp2 1131 . . 3 ((𝑃 ∈ (Base‘𝐾) ∧ 𝑃0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) → 𝑃0 )
75, 6syl6bi 243 . 2 (𝐾 ∈ AtLat → (𝑃𝐴𝑃0 ))
87imp 393 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061   class class class wbr 4786  cfv 6031  Basecbs 16064  lecple 16156  0.cp0 17245  Atomscatm 35072  AtLatcal 35073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-plt 17166  df-glb 17183  df-p0 17247  df-covers 35075  df-ats 35076  df-atl 35107
This theorem is referenced by:  atncvrN  35124  atnle  35126  atlatmstc  35128  intnatN  35215  atcvrneN  35238  atcvrj2b  35240  2llnm3N  35377  pmapjat1  35661  lhpocnle  35824  lhpmatb  35839  lhp2atnle  35841  trlatn0  35981  ltrnnidn  35983  trlnidatb  35986  cdlemg33c  36517  cdlemg33e  36519  dihatexv  37148
  Copyright terms: Public domain W3C validator