![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atn0 | Structured version Visualization version GIF version |
Description: An atom is not zero. (atne0 29544 analog.) (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
atne0.z | ⊢ 0 = (0.‘𝐾) |
atne0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atn0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2771 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | atne0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
4 | atne0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | isat3 35116 | . . 3 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) |
6 | simp2 1131 | . . 3 ⊢ ((𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))) → 𝑃 ≠ 0 ) | |
7 | 5, 6 | syl6bi 243 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 → 𝑃 ≠ 0 )) |
8 | 7 | imp 393 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∨ wo 836 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 class class class wbr 4786 ‘cfv 6031 Basecbs 16064 lecple 16156 0.cp0 17245 Atomscatm 35072 AtLatcal 35073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-plt 17166 df-glb 17183 df-p0 17247 df-covers 35075 df-ats 35076 df-atl 35107 |
This theorem is referenced by: atncvrN 35124 atnle 35126 atlatmstc 35128 intnatN 35215 atcvrneN 35238 atcvrj2b 35240 2llnm3N 35377 pmapjat1 35661 lhpocnle 35824 lhpmatb 35839 lhp2atnle 35841 trlatn0 35981 ltrnnidn 35983 trlnidatb 35986 cdlemg33c 36517 cdlemg33e 36519 dihatexv 37148 |
Copyright terms: Public domain | W3C validator |