![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlrelat1 | Structured version Visualization version GIF version |
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 29531, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
atlrelat1.b | ⊢ 𝐵 = (Base‘𝐾) |
atlrelat1.l | ⊢ ≤ = (le‘𝐾) |
atlrelat1.s | ⊢ < = (lt‘𝐾) |
atlrelat1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlrelat1 | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1248 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
2 | atlpos 35091 | . . . 4 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
4 | atlrelat1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | atlrelat1.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
6 | atlrelat1.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
7 | 4, 5, 6 | pltnle 17167 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) |
8 | 7 | ex 449 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
9 | 3, 8 | syld3an1 1517 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
10 | iman 439 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋)) | |
11 | ancom 465 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋) ↔ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
12 | 10, 11 | xchbinx 323 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) |
13 | 12 | ralbii 3118 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) |
14 | atlrelat1.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 4, 5, 14 | atlatle 35110 | . . . . . . 7 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) |
16 | 15 | 3com23 1121 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) |
17 | 16 | biimprd 238 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) → 𝑌 ≤ 𝑋)) |
18 | 13, 17 | syl5bir 233 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) → 𝑌 ≤ 𝑋)) |
19 | 18 | con3d 148 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
20 | dfrex2 3134 | . . 3 ⊢ (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
21 | 19, 20 | syl6ibr 242 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
22 | 9, 21 | syld 47 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 class class class wbr 4804 ‘cfv 6049 Basecbs 16059 lecple 16150 Posetcpo 17141 ltcplt 17142 CLatccla 17308 OMLcoml 34965 Atomscatm 35053 AtLatcal 35054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-preset 17129 df-poset 17147 df-plt 17159 df-lub 17175 df-glb 17176 df-join 17177 df-meet 17178 df-p0 17240 df-lat 17247 df-clat 17309 df-oposet 34966 df-ol 34968 df-oml 34969 df-covers 35056 df-ats 35057 df-atl 35088 |
This theorem is referenced by: cvlcvr1 35129 hlrelat1 35189 |
Copyright terms: Public domain | W3C validator |