Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atex Structured version   Visualization version   GIF version

Theorem atex 35213
Description: At least one atom exists. (Contributed by NM, 15-Jul-2012.)
Hypothesis
Ref Expression
atex.1 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atex (𝐾 ∈ HL → 𝐴 ≠ ∅)

Proof of Theorem atex
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atex.1 . . . 4 𝐴 = (Atoms‘𝐾)
21hl2at 35212 . . 3 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
3 df-rex 3056 . . . 4 (∃𝑝𝐴𝑞𝐴 𝑝𝑞 ↔ ∃𝑝(𝑝𝐴 ∧ ∃𝑞𝐴 𝑝𝑞))
4 exsimpl 1944 . . . 4 (∃𝑝(𝑝𝐴 ∧ ∃𝑞𝐴 𝑝𝑞) → ∃𝑝 𝑝𝐴)
53, 4sylbi 207 . . 3 (∃𝑝𝐴𝑞𝐴 𝑝𝑞 → ∃𝑝 𝑝𝐴)
62, 5syl 17 . 2 (𝐾 ∈ HL → ∃𝑝 𝑝𝐴)
7 n0 4074 . 2 (𝐴 ≠ ∅ ↔ ∃𝑝 𝑝𝐴)
86, 7sylibr 224 1 (𝐾 ∈ HL → 𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wex 1853  wcel 2139  wne 2932  wrex 3051  c0 4058  cfv 6049  Atomscatm 35071  HLchlt 35158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159
This theorem is referenced by:  llnn0  35323  lplnn0N  35354  lvoln0N  35398
  Copyright terms: Public domain W3C validator