Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln2 Structured version   Visualization version   GIF version

Theorem atcvrlln2 35308
 Description: An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.)
Hypotheses
Ref Expression
atcvrlln2.l = (le‘𝐾)
atcvrlln2.c 𝐶 = ( ⋖ ‘𝐾)
atcvrlln2.a 𝐴 = (Atoms‘𝐾)
atcvrlln2.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
atcvrlln2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑃𝐶𝑋)

Proof of Theorem atcvrlln2
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1232 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑋𝑁)
2 simpl1 1228 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝐾 ∈ HL)
3 eqid 2760 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 atcvrlln2.n . . . . . 6 𝑁 = (LLines‘𝐾)
53, 4llnbase 35298 . . . . 5 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑋 ∈ (Base‘𝐾))
7 eqid 2760 . . . . 5 (join‘𝐾) = (join‘𝐾)
8 atcvrlln2.a . . . . 5 𝐴 = (Atoms‘𝐾)
93, 7, 8, 4islln3 35299 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
102, 6, 9syl2anc 696 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))))
111, 10mpbid 222 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)))
12 simp1l1 1351 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 simp1l2 1352 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐴)
14 simp2l 1242 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝐴)
15 simp2r 1243 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑟𝐴)
16 simp3l 1244 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑞𝑟)
17 simp1r 1241 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 𝑋)
18 simp3r 1245 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑋 = (𝑞(join‘𝐾)𝑟))
1917, 18breqtrd 4830 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃 (𝑞(join‘𝐾)𝑟))
20 atcvrlln2.l . . . . . . 7 = (le‘𝐾)
21 atcvrlln2.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
2220, 7, 21, 8atcvrj2 35222 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑃 (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2312, 13, 14, 15, 16, 19, 22syl132anc 1495 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
2423, 18breqtrrd 4832 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) ∧ (𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟))) → 𝑃𝐶𝑋)
25243exp 1113 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → ((𝑞𝐴𝑟𝐴) → ((𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋)))
2625rexlimdvv 3175 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = (𝑞(join‘𝐾)𝑟)) → 𝑃𝐶𝑋))
2711, 26mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑃𝐶𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  Basecbs 16059  lecple 16150  joincjn 17145   ⋖ ccvr 35052  Atomscatm 35053  HLchlt 35140  LLinesclln 35280 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287 This theorem is referenced by:  llnexatN  35310  llncmp  35311  2llnmat  35313  2llnmj  35349
 Copyright terms: Public domain W3C validator