Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrlln Structured version   Visualization version   GIF version

Theorem atcvrlln 35309
 Description: An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
atcvrlln.b 𝐵 = (Base‘𝐾)
atcvrlln.c 𝐶 = ( ⋖ ‘𝐾)
atcvrlln.a 𝐴 = (Atoms‘𝐾)
atcvrlln.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
atcvrlln (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝐴𝑌𝑁))

Proof of Theorem atcvrlln
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1255 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2 simpll3 1259 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑌𝐵)
3 simpr 479 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑋𝐴)
4 simplr 809 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑋𝐶𝑌)
5 atcvrlln.b . . . 4 𝐵 = (Base‘𝐾)
6 atcvrlln.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
7 atcvrlln.a . . . 4 𝐴 = (Atoms‘𝐾)
8 atcvrlln.n . . . 4 𝑁 = (LLines‘𝐾)
95, 6, 7, 8llni 35297 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐴) ∧ 𝑋𝐶𝑌) → 𝑌𝑁)
101, 2, 3, 4, 9syl31anc 1480 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑋𝐴) → 𝑌𝑁)
11 simpr 479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑌𝑁)
12 simpll1 1255 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝐾 ∈ HL)
13 simpll3 1259 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑌𝐵)
14 eqid 2760 . . . . . 6 (join‘𝐾) = (join‘𝐾)
155, 14, 7, 8islln3 35299 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑌𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
1612, 13, 15syl2anc 696 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → (𝑌𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
1711, 16mpbid 222 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))
18 simp1l1 1351 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL)
19 simp1l2 1352 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐵)
20 simp2l 1242 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝𝐴)
21 simp2r 1243 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞𝐴)
22 simp3l 1244 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝𝑞)
23 simp1r 1241 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐶𝑌)
24 simp3r 1245 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
2523, 24breqtrd 4830 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐶(𝑝(join‘𝐾)𝑞))
265, 14, 6, 7cvrat2 35218 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑋𝐶(𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
2718, 19, 20, 21, 22, 25, 26syl132anc 1495 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ (𝑝𝐴𝑞𝐴) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
28273exp 1113 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → ((𝑝𝐴𝑞𝐴) → ((𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴)))
2928rexlimdvv 3175 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴))
3029adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → 𝑋𝐴))
3117, 30mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) ∧ 𝑌𝑁) → 𝑋𝐴)
3210, 31impbida 913 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝐴𝑌𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  Basecbs 16059  joincjn 17145   ⋖ ccvr 35052  Atomscatm 35053  HLchlt 35140  LLinesclln 35280 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287 This theorem is referenced by:  llncvrlpln  35347  2llnmj  35349  2llnm2N  35357
 Copyright terms: Public domain W3C validator