Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl2 Structured version   Visualization version   GIF version

Theorem atantayl2 24864
 Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl2.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
Assertion
Ref Expression
atantayl2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl2
StepHypRef Expression
1 atantayl2.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
2 ax-icn 10187 . . . . . . . . . . . . . . . 16 i ∈ ℂ
32negcli 10541 . . . . . . . . . . . . . . 15 -i ∈ ℂ
43a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ∈ ℂ)
5 nnnn0 11491 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
65ad2antlr 765 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
74, 6expcld 13202 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
8 sqneg 13117 . . . . . . . . . . . . . . . . 17 (i ∈ ℂ → (-i↑2) = (i↑2))
92, 8ax-mp 5 . . . . . . . . . . . . . . . 16 (-i↑2) = (i↑2)
109oveq1i 6823 . . . . . . . . . . . . . . 15 ((-i↑2)↑(𝑛 / 2)) = ((i↑2)↑(𝑛 / 2))
11 ine0 10657 . . . . . . . . . . . . . . . . . 18 i ≠ 0
122, 11negne0i 10548 . . . . . . . . . . . . . . . . 17 -i ≠ 0
1312a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ≠ 0)
14 2z 11601 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
1514a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℤ)
1614a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 2 ∈ ℤ)
17 2ne0 11305 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
1817a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 2 ≠ 0)
19 nnz 11591 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
2019adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
21 dvdsval2 15185 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑛 ∈ ℤ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2216, 18, 20, 21syl3anc 1477 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2322biimpa 502 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝑛 / 2) ∈ ℤ)
24 expmulz 13100 . . . . . . . . . . . . . . . 16 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
254, 13, 15, 23, 24syl22anc 1478 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
262a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ∈ ℂ)
2711a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ≠ 0)
28 expmulz 13100 . . . . . . . . . . . . . . . 16 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
2926, 27, 15, 23, 28syl22anc 1478 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
3010, 25, 293eqtr4a 2820 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (i↑(2 · (𝑛 / 2))))
31 nncn 11220 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3231ad2antlr 765 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
33 2cnd 11285 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℂ)
3417a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ≠ 0)
3532, 33, 34divcan2d 10995 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (2 · (𝑛 / 2)) = 𝑛)
3635oveq2d 6829 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (-i↑𝑛))
3735oveq2d 6829 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = (i↑𝑛))
3830, 36, 373eqtr3d 2802 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) = (i↑𝑛))
397, 38subeq0bd 10648 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((-i↑𝑛) − (i↑𝑛)) = 0)
4039oveq2d 6829 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = (i · 0))
41 it0e0 11446 . . . . . . . . . . 11 (i · 0) = 0
4240, 41syl6eq 2810 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = 0)
4342oveq1d 6828 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = (0 / 2))
44 2cn 11283 . . . . . . . . . 10 2 ∈ ℂ
4544, 17div0i 10951 . . . . . . . . 9 (0 / 2) = 0
4643, 45syl6eq 2810 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = 0)
4746oveq1d 6828 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)) = (0 · ((𝐴𝑛) / 𝑛)))
48 simplll 815 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝐴 ∈ ℂ)
4948, 6expcld 13202 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝐴𝑛) ∈ ℂ)
50 nnne0 11245 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5150ad2antlr 765 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ≠ 0)
5249, 32, 51divcld 10993 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((𝐴𝑛) / 𝑛) ∈ ℂ)
5352mul02d 10426 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (0 · ((𝐴𝑛) / 𝑛)) = 0)
5447, 53eqtr2d 2795 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
55 2cnd 11285 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℂ)
56 ax-1cn 10186 . . . . . . . . . . 11 1 ∈ ℂ
5756negcli 10541 . . . . . . . . . 10 -1 ∈ ℂ
5857a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ∈ ℂ)
59 neg1ne0 11318 . . . . . . . . . 10 -1 ≠ 0
6059a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ≠ 0)
6131ad2antlr 765 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
62 peano2cn 10400 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
6361, 62syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 + 1) ∈ ℂ)
6417a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ≠ 0)
6563, 55, 55, 64divsubdird 11032 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − (2 / 2)))
66 2div2e1 11342 . . . . . . . . . . . . 13 (2 / 2) = 1
6766oveq2i 6824 . . . . . . . . . . . 12 (((𝑛 + 1) / 2) − (2 / 2)) = (((𝑛 + 1) / 2) − 1)
6865, 67syl6eq 2810 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − 1))
69 df-2 11271 . . . . . . . . . . . . . 14 2 = (1 + 1)
7069oveq2i 6824 . . . . . . . . . . . . 13 ((𝑛 + 1) − 2) = ((𝑛 + 1) − (1 + 1))
7156a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 1 ∈ ℂ)
7261, 71, 71pnpcan2d 10622 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − (1 + 1)) = (𝑛 − 1))
7370, 72syl5eq 2806 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − 2) = (𝑛 − 1))
7473oveq1d 6828 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = ((𝑛 − 1) / 2))
7568, 74eqtr3d 2796 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) = ((𝑛 − 1) / 2))
7622notbid 307 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ¬ (𝑛 / 2) ∈ ℤ))
77 zeo 11655 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7820, 77syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7978ord 391 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ (𝑛 / 2) ∈ ℤ → ((𝑛 + 1) / 2) ∈ ℤ))
8076, 79sylbid 230 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ((𝑛 + 1) / 2) ∈ ℤ))
8180imp 444 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) / 2) ∈ ℤ)
82 peano2zm 11612 . . . . . . . . . . 11 (((𝑛 + 1) / 2) ∈ ℤ → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8381, 82syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8475, 83eqeltrrd 2840 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 − 1) / 2) ∈ ℤ)
8558, 60, 84expclzd 13207 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) ∈ ℂ)
86852timesd 11467 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))))
87 subcl 10472 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
8861, 56, 87sylancl 697 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 − 1) ∈ ℂ)
8988, 55, 64divcan2d 10995 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · ((𝑛 − 1) / 2)) = (𝑛 − 1))
9089oveq2d 6829 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = (-i↑(𝑛 − 1)))
913a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ∈ ℂ)
9212a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ≠ 0)
9319ad2antlr 765 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℤ)
9491, 92, 93expm1d 13212 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(𝑛 − 1)) = ((-i↑𝑛) / -i))
9590, 94eqtrd 2794 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑𝑛) / -i))
9614a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℤ)
97 expmulz 13100 . . . . . . . . . . . . 13 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
9891, 92, 96, 84, 97syl22anc 1478 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
995ad2antlr 765 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
100 expcl 13072 . . . . . . . . . . . . . 14 ((-i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-i↑𝑛) ∈ ℂ)
1013, 99, 100sylancr 698 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
102101, 91, 92divrec2d 10997 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑𝑛) / -i) = ((1 / -i) · (-i↑𝑛)))
10395, 98, 1023eqtr3d 2802 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑2)↑((𝑛 − 1) / 2)) = ((1 / -i) · (-i↑𝑛)))
104 i2 13159 . . . . . . . . . . . . 13 (i↑2) = -1
1059, 104eqtri 2782 . . . . . . . . . . . 12 (-i↑2) = -1
106105oveq1i 6823 . . . . . . . . . . 11 ((-i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
107 irec 13158 . . . . . . . . . . . . . 14 (1 / i) = -i
108107negeqi 10466 . . . . . . . . . . . . 13 -(1 / i) = --i
109 divneg2 10941 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → -(1 / i) = (1 / -i))
11056, 2, 11, 109mp3an 1573 . . . . . . . . . . . . 13 -(1 / i) = (1 / -i)
1112negnegi 10543 . . . . . . . . . . . . 13 --i = i
112108, 110, 1113eqtr3i 2790 . . . . . . . . . . . 12 (1 / -i) = i
113112oveq1i 6823 . . . . . . . . . . 11 ((1 / -i) · (-i↑𝑛)) = (i · (-i↑𝑛))
114103, 106, 1133eqtr3g 2817 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (i · (-i↑𝑛)))
11589oveq2d 6829 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = (i↑(𝑛 − 1)))
1162a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ∈ ℂ)
11711a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ≠ 0)
118116, 117, 93expm1d 13212 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(𝑛 − 1)) = ((i↑𝑛) / i))
119115, 118eqtrd 2794 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑𝑛) / i))
120 expmulz 13100 . . . . . . . . . . . . . 14 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
121116, 117, 96, 84, 120syl22anc 1478 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
122 expcl 13072 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (i↑𝑛) ∈ ℂ)
1232, 99, 122sylancr 698 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑𝑛) ∈ ℂ)
124123, 116, 117divrec2d 10997 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑𝑛) / i) = ((1 / i) · (i↑𝑛)))
125119, 121, 1243eqtr3d 2802 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑2)↑((𝑛 − 1) / 2)) = ((1 / i) · (i↑𝑛)))
126104oveq1i 6823 . . . . . . . . . . . 12 ((i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
127107oveq1i 6823 . . . . . . . . . . . 12 ((1 / i) · (i↑𝑛)) = (-i · (i↑𝑛))
128125, 126, 1273eqtr3g 2817 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (-i · (i↑𝑛)))
129 mulneg1 10658 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
1302, 123, 129sylancr 698 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
131128, 130eqtrd 2794 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = -(i · (i↑𝑛)))
132114, 131oveq12d 6831 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))) = ((i · (-i↑𝑛)) + -(i · (i↑𝑛))))
133 mulcl 10212 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (-i↑𝑛) ∈ ℂ) → (i · (-i↑𝑛)) ∈ ℂ)
1342, 101, 133sylancr 698 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (-i↑𝑛)) ∈ ℂ)
135 mulcl 10212 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (i · (i↑𝑛)) ∈ ℂ)
1362, 123, 135sylancr 698 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (i↑𝑛)) ∈ ℂ)
137134, 136negsubd 10590 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
138116, 101, 123subdid 10678 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
139137, 138eqtr4d 2797 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = (i · ((-i↑𝑛) − (i↑𝑛))))
14086, 132, 1393eqtrd 2798 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = (i · ((-i↑𝑛) − (i↑𝑛))))
14155, 85, 64, 140mvllmuld 11049 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = ((i · ((-i↑𝑛) − (i↑𝑛))) / 2))
142141oveq1d 6828 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
14354, 142ifeqda 4265 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
144143mpteq2dva 4896 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
1451, 144syl5eq 2806 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
146145seqeq3d 13003 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) = seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))))
147 eqid 2760 . . 3 (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
148147atantayl 24863 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))) ⇝ (arctan‘𝐴))
149146, 148eqbrtrd 4826 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ifcif 4230   class class class wbr 4804   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  0cc0 10128  1c1 10129  ici 10130   + caddc 10131   · cmul 10133   < clt 10266   − cmin 10458  -cneg 10459   / cdiv 10876  ℕcn 11212  2c2 11262  ℕ0cn0 11484  ℤcz 11569  seqcseq 12995  ↑cexp 13054  abscabs 14173   ⇝ cli 14414   ∥ cdvds 15182  arctancatan 24790 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-tan 15001  df-pi 15002  df-dvds 15183  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-cmp 21392  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-ulm 24330  df-log 24502  df-atan 24793 This theorem is referenced by:  atantayl3  24865  leibpi  24868
 Copyright terms: Public domain W3C validator