MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsublem Structured version   Visualization version   GIF version

Theorem atanlogsublem 24762
Description: Lemma for atanlogsub 24763. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsublem ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))

Proof of Theorem atanlogsublem
StepHypRef Expression
1 ax-1cn 10107 . . . . . 6 1 ∈ ℂ
2 ax-icn 10108 . . . . . . 7 i ∈ ℂ
3 simpl 474 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ dom arctan)
4 atandm2 24724 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
53, 4sylib 208 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
65simp1d 1134 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
7 mulcl 10133 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
82, 6, 7sylancr 698 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
9 addcl 10131 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
101, 8, 9sylancr 698 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
115simp3d 1136 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ≠ 0)
1210, 11logcld 24437 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
13 subcl 10393 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
141, 8, 13sylancr 698 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
155simp2d 1135 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ≠ 0)
1614, 15logcld 24437 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
1712, 16imsubd 14077 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))))
182a1i 11 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → i ∈ ℂ)
1918, 6, 18subdid 10599 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = ((i · 𝐴) − (i · i)))
20 ixi 10769 . . . . . . . . . . 11 (i · i) = -1
2120oveq2i 6776 . . . . . . . . . 10 ((i · 𝐴) − (i · i)) = ((i · 𝐴) − -1)
22 subneg 10443 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
238, 1, 22sylancl 697 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
2421, 23syl5eq 2770 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − (i · i)) = ((i · 𝐴) + 1))
25 addcom 10335 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
268, 1, 25sylancl 697 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
2719, 24, 263eqtrd 2762 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = (1 + (i · 𝐴)))
2827fveq2d 6308 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = (log‘(1 + (i · 𝐴))))
29 subcl 10393 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − i) ∈ ℂ)
306, 2, 29sylancl 697 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ∈ ℂ)
31 resub 13987 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
326, 2, 31sylancl 697 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
33 rei 14016 . . . . . . . . . . . . 13 (ℜ‘i) = 0
3433oveq2i 6776 . . . . . . . . . . . 12 ((ℜ‘𝐴) − (ℜ‘i)) = ((ℜ‘𝐴) − 0)
356recld 14054 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
3635recnd 10181 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
3736subid1d 10494 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − 0) = (ℜ‘𝐴))
3834, 37syl5eq 2770 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − (ℜ‘i)) = (ℜ‘𝐴))
3932, 38eqtrd 2758 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = (ℜ‘𝐴))
40 gt0ne0 10606 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4135, 40sylancom 704 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4239, 41eqnetrd 2963 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) ≠ 0)
43 fveq2 6304 . . . . . . . . . . 11 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = (ℜ‘0))
44 re0 14012 . . . . . . . . . . 11 (ℜ‘0) = 0
4543, 44syl6eq 2774 . . . . . . . . . 10 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = 0)
4645necon3i 2928 . . . . . . . . 9 ((ℜ‘(𝐴 − i)) ≠ 0 → (𝐴 − i) ≠ 0)
4742, 46syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ≠ 0)
48 simpr 479 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
49 0re 10153 . . . . . . . . . . 11 0 ∈ ℝ
50 ltle 10239 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5149, 35, 50sylancr 698 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5248, 51mpd 15 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘𝐴))
5352, 39breqtrrd 4788 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 − i)))
54 logimul 24480 . . . . . . . 8 (((𝐴 − i) ∈ ℂ ∧ (𝐴 − i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 − i))) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5530, 47, 53, 54syl3anc 1439 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5628, 55eqtr3d 2760 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5756fveq2d 6308 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))))
5830, 47logcld 24437 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 − i)) ∈ ℂ)
59 halfpire 24336 . . . . . . . . 9 (π / 2) ∈ ℝ
6059recni 10165 . . . . . . . 8 (π / 2) ∈ ℂ
612, 60mulcli 10158 . . . . . . 7 (i · (π / 2)) ∈ ℂ
62 imadd 13994 . . . . . . 7 (((log‘(𝐴 − i)) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
6358, 61, 62sylancl 697 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
64 reim 13969 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
6560, 64ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
66 rere 13982 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
6759, 66ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
6865, 67eqtr3i 2748 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
6968oveq2i 6776 . . . . . 6 ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2))
7063, 69syl6eq 2774 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
7157, 70eqtrd 2758 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
72 addcl 10131 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
736, 2, 72sylancl 697 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ∈ ℂ)
74 mulcl 10133 . . . . . . . . 9 ((i ∈ ℂ ∧ (𝐴 + i) ∈ ℂ) → (i · (𝐴 + i)) ∈ ℂ)
752, 73, 74sylancr 698 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) ∈ ℂ)
76 reim 13969 . . . . . . . . . . 11 ((𝐴 + i) ∈ ℂ → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
7773, 76syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
78 readd 13986 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
796, 2, 78sylancl 697 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
8033oveq2i 6776 . . . . . . . . . . . 12 ((ℜ‘𝐴) + (ℜ‘i)) = ((ℜ‘𝐴) + 0)
8136addid1d 10349 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
8280, 81syl5eq 2770 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + (ℜ‘i)) = (ℜ‘𝐴))
8379, 82eqtrd 2758 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℜ‘𝐴))
8477, 83eqtr3d 2760 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(i · (𝐴 + i))) = (ℜ‘𝐴))
8548, 84breqtrrd 4788 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(i · (𝐴 + i))))
86 logneg2 24481 . . . . . . . 8 (((i · (𝐴 + i)) ∈ ℂ ∧ 0 < (ℑ‘(i · (𝐴 + i)))) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8775, 85, 86syl2anc 696 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8818, 6, 18adddid 10177 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) + (i · i)))
8920oveq2i 6776 . . . . . . . . . . . 12 ((i · 𝐴) + (i · i)) = ((i · 𝐴) + -1)
90 negsub 10442 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
918, 1, 90sylancl 697 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
9289, 91syl5eq 2770 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + (i · i)) = ((i · 𝐴) − 1))
9388, 92eqtrd 2758 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) − 1))
9493negeqd 10388 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = -((i · 𝐴) − 1))
95 negsubdi2 10453 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
968, 1, 95sylancl 697 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
9794, 96eqtrd 2758 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = (1 − (i · 𝐴)))
9897fveq2d 6308 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = (log‘(1 − (i · 𝐴))))
9983, 41eqnetrd 2963 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) ≠ 0)
100 fveq2 6304 . . . . . . . . . . . . 13 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = (ℜ‘0))
101100, 44syl6eq 2774 . . . . . . . . . . . 12 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = 0)
102101necon3i 2928 . . . . . . . . . . 11 ((ℜ‘(𝐴 + i)) ≠ 0 → (𝐴 + i) ≠ 0)
10399, 102syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ≠ 0)
10452, 83breqtrrd 4788 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 + i)))
105 logimul 24480 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (𝐴 + i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 + i))) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
10673, 103, 104, 105syl3anc 1439 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
107106oveq1d 6780 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = (((log‘(𝐴 + i)) + (i · (π / 2))) − (i · π)))
10873, 103logcld 24437 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 + i)) ∈ ℂ)
10961a1i 11 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (π / 2)) ∈ ℂ)
110 picn 24331 . . . . . . . . . . 11 π ∈ ℂ
1112, 110mulcli 10158 . . . . . . . . . 10 (i · π) ∈ ℂ
112111a1i 11 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · π) ∈ ℂ)
113108, 109, 112addsubassd 10525 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((log‘(𝐴 + i)) + (i · (π / 2))) − (i · π)) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
114107, 113eqtrd 2758 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
11587, 98, 1143eqtr3d 2766 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
116115fveq2d 6308 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))))
11761, 111subcli 10470 . . . . . . 7 ((i · (π / 2)) − (i · π)) ∈ ℂ
118 imadd 13994 . . . . . . 7 (((log‘(𝐴 + i)) ∈ ℂ ∧ ((i · (π / 2)) − (i · π)) ∈ ℂ) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
119108, 117, 118sylancl 697 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
120 imsub 13995 . . . . . . . . 9 (((i · (π / 2)) ∈ ℂ ∧ (i · π) ∈ ℂ) → (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))))
12161, 111, 120mp2an 710 . . . . . . . 8 (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π)))
122 reim 13969 . . . . . . . . . . 11 (π ∈ ℂ → (ℜ‘π) = (ℑ‘(i · π)))
123110, 122ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = (ℑ‘(i · π))
124 pire 24330 . . . . . . . . . . 11 π ∈ ℝ
125 rere 13982 . . . . . . . . . . 11 (π ∈ ℝ → (ℜ‘π) = π)
126124, 125ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = π
127123, 126eqtr3i 2748 . . . . . . . . 9 (ℑ‘(i · π)) = π
12868, 127oveq12i 6777 . . . . . . . 8 ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))) = ((π / 2) − π)
12960negcli 10462 . . . . . . . . 9 -(π / 2) ∈ ℂ
130110, 60negsubi 10472 . . . . . . . . . 10 (π + -(π / 2)) = (π − (π / 2))
131 pidiv2halves 24339 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
132110, 60, 60, 131subaddrii 10483 . . . . . . . . . 10 (π − (π / 2)) = (π / 2)
133130, 132eqtri 2746 . . . . . . . . 9 (π + -(π / 2)) = (π / 2)
13460, 110, 129, 133subaddrii 10483 . . . . . . . 8 ((π / 2) − π) = -(π / 2)
135121, 128, 1343eqtri 2750 . . . . . . 7 (ℑ‘((i · (π / 2)) − (i · π))) = -(π / 2)
136135oveq2i 6776 . . . . . 6 ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))
137119, 136syl6eq 2774 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
138116, 137eqtrd 2758 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
13971, 138oveq12d 6783 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))))
14058imcld 14055 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℝ)
141140recnd 10181 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℂ)
14260a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (π / 2) ∈ ℂ)
143108imcld 14055 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
144143recnd 10181 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℂ)
145129a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(π / 2) ∈ ℂ)
146141, 142, 144, 145addsub4d 10552 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))))
14760, 60subnegi 10473 . . . . . 6 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
148147, 131eqtri 2746 . . . . 5 ((π / 2) − -(π / 2)) = π
149148oveq2i 6776 . . . 4 (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)
150146, 149syl6eq 2774 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
15117, 139, 1503eqtrd 2762 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
152140, 143resubcld 10571 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ)
153 readdcl 10132 . . . 4 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
154152, 124, 153sylancl 697 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
155124renegcli 10455 . . . . . . 7 -π ∈ ℝ
156155recni 10165 . . . . . 6 -π ∈ ℂ
157156, 110negsubi 10472 . . . . 5 (-π + -π) = (-π − π)
158155a1i 11 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
159143renegcld 10570 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
16030, 47logimcld 24438 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 − i))) ∧ (ℑ‘(log‘(𝐴 − i))) ≤ π))
161160simpld 477 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(𝐴 − i))))
16273, 103logimcld 24438 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 + i))) ∧ (ℑ‘(log‘(𝐴 + i))) ≤ π))
163162simprd 482 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ≤ π)
164 leneg 10644 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 + i))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
165143, 124, 164sylancl 697 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
166163, 165mpbid 222 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ≤ -(ℑ‘(log‘(𝐴 + i))))
167158, 158, 140, 159, 161, 166ltleaddd 10761 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))))
168141, 144negsubd 10511 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
169167, 168breqtrd 4786 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
170157, 169syl5eqbrr 4796 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
171124a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
172158, 171, 152ltsubaddd 10736 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ↔ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)))
173170, 172mpbid 222 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
174 0red 10154 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
1756imcld 14055 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) ∈ ℝ)
176 peano2rem 10461 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) − 1) ∈ ℝ)
177175, 176syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) ∈ ℝ)
178 peano2re 10322 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) + 1) ∈ ℝ)
179175, 178syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) + 1) ∈ ℝ)
180175ltm1d 11069 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < (ℑ‘𝐴))
181175ltp1d 11067 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) < ((ℑ‘𝐴) + 1))
182177, 175, 179, 180, 181lttrd 10311 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1))
183 ltdiv1 11000 . . . . . . . . . . . 12 ((((ℑ‘𝐴) − 1) ∈ ℝ ∧ ((ℑ‘𝐴) + 1) ∈ ℝ ∧ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴))) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
184177, 179, 35, 48, 183syl112anc 1443 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
185182, 184mpbid 222 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
186 imsub 13995 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
1876, 2, 186sylancl 697 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
188 imi 14017 . . . . . . . . . . . . 13 (ℑ‘i) = 1
189188oveq2i 6776 . . . . . . . . . . . 12 ((ℑ‘𝐴) − (ℑ‘i)) = ((ℑ‘𝐴) − 1)
190187, 189syl6eq 2774 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − 1))
191190, 39oveq12d 6783 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) = (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)))
192 imadd 13994 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
1936, 2, 192sylancl 697 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
194188oveq2i 6776 . . . . . . . . . . . 12 ((ℑ‘𝐴) + (ℑ‘i)) = ((ℑ‘𝐴) + 1)
195193, 194syl6eq 2774 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + 1))
196195, 83oveq12d 6783 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))) = (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
197185, 191, 1963brtr4d 4792 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) < ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
198 tanarg 24485 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ (ℜ‘(𝐴 − i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
19930, 42, 198syl2anc 696 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
200 tanarg 24485 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (ℜ‘(𝐴 + i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
20173, 99, 200syl2anc 696 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
202197, 199, 2013brtr4d 4792 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i)))))
20348, 39breqtrrd 4788 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 − i)))
204 argregt0 24476 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 − i))) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20530, 203, 204syl2anc 696 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20648, 83breqtrrd 4788 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 + i)))
207 argregt0 24476 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 + i))) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
20873, 206, 207syl2anc 696 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
209 tanord 24404 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)) ∧ (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2))) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
210205, 208, 209syl2anc 696 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
211202, 210mpbird 247 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))))
212144addid2d 10350 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℑ‘(log‘(𝐴 + i)))) = (ℑ‘(log‘(𝐴 + i))))
213211, 212breqtrrd 4788 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i)))))
214140, 143, 174ltsubaddd 10736 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0 ↔ (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i))))))
215213, 214mpbird 247 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0)
216152, 174, 171, 215ltadd1dd 10751 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < (0 + π))
217110addid2i 10337 . . . 4 (0 + π) = π
218216, 217syl6breq 4801 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)
219155rexri 10210 . . . 4 -π ∈ ℝ*
220124rexri 10210 . . . 4 π ∈ ℝ*
221 elioo2 12330 . . . 4 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)))
222219, 220, 221mp2an 710 . . 3 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π))
223154, 173, 218, 222syl3anbrc 1383 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π))
224151, 223eqeltrd 2803 1 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896   class class class wbr 4760  dom cdm 5218  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050  ici 10051   + caddc 10052   · cmul 10054  *cxr 10186   < clt 10187  cle 10188  cmin 10379  -cneg 10380   / cdiv 10797  2c2 11183  (,)cioo 12289  cre 13957  cim 13958  tanctan 14916  πcpi 14917  logclog 24421  arctancatan 24711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-sin 14920  df-cos 14921  df-tan 14922  df-pi 14923  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-log 24423  df-atan 24714
This theorem is referenced by:  atanlogsub  24763  atanbndlem  24772
  Copyright terms: Public domain W3C validator